## Donna Eberhart-Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7368734/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Catalogue of 2001–2011 New Zealand earthquakes relocated with 3-D seismic velocity model and comparison to 2019–2020 auto-detected earthquakes in the sparsely instrumented southern South Island. New Zealand Journal of Geology, and Geophysics, 2023, 66, 646-653. | 1.8 | 4         |
| 2  | The Influence of Basement Terranes on Tectonic Deformation: Joint Earthquake Travelâ€Time and<br>Ambient Noise Tomography of the Southern South Island, New Zealand. Tectonics, 2022, 41, .                                                                           | 2.8 | 5         |
| 3  | Fracturing and pore-fluid distribution in the Marlborough region, New Zealand from body-wave<br>tomography: Implications for regional understanding of the KaikÅura area. Earth and Planetary Science<br>Letters, 2022, 593, 117666.                                  | 4.4 | 3         |
| 4  | A Geology and Geodesy Based Model of Dynamic Earthquake Rupture on the Rodgers<br>Creekâ€Hayward alaveras Fault System, California. Journal of Geophysical Research: Solid Earth, 2021,<br>126, e2020JB020577.                                                        | 3.4 | 24        |
| 5  | Near Trench 3D Seismic Attenuation Offshore Northern Hikurangi Subduction Margin, North Island,<br>New Zealand. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020810.                                                                               | 3.4 | 6         |
| 6  | Heterogeneous material properties—as inferred from seismic attenuation—influenced multiple fault<br>rupture and ductile creep of the Kaikoura <i>M</i> w 7.8 earthquake, New Zealand. Geophysical Journal<br>International, 2021, 227, 1204-1227.                     | 2.4 | 7         |
| 7  | Attenuation in the mantle wedge beneath super-volcanoes of the Taupo Volcanic Zone, New Zealand.<br>Geophysical Journal International, 2020, 220, 703-723.                                                                                                            | 2.4 | 24        |
| 8  | 3D Seismic Velocity Models for Alaska from Joint Tomographic Inversion of Body-Wave and Surface-Wave Data. Seismological Research Letters, 2020, 91, 3106-3119.                                                                                                       | 1.9 | 21        |
| 9  | Upper Plate Heterogeneity Along the Southern Hikurangi Margin, New Zealand. Geophysical Research<br>Letters, 2020, 47, e2019GL085511.                                                                                                                                 | 4.0 | 11        |
| 10 | Crustal Fault Connectivity of the M <sub>w</sub> 7.8 2016 KaikÅura Earthquake Constrained by<br>Aftershock Relocations. Geophysical Research Letters, 2019, 46, 6487-6496.                                                                                            | 4.0 | 29        |
| 11 | Insights into the structure and tectonic history of the southern South Island, New Zealand, from the<br>3-D distribution of P- and S-wave attenuation. Geophysical Journal International, 2018, 214, 1479-1505.                                                       | 2.4 | 7         |
| 12 | Joint local earthquake and teleseismic inversion for 3-D velocity and Q in New Zealand. Physics of the<br>Earth and Planetary Interiors, 2018, 283, 48-66.                                                                                                            | 1.9 | 10        |
| 13 | Detecting hazardous New Zealand faults at depth using seismic velocity gradients. Earth and Planetary Science Letters, 2017, 463, 333-343.                                                                                                                            | 4.4 | 13        |
| 14 | Subducting an old subduction zone sideways provides insights into what controls plate coupling.<br>Earth and Planetary Science Letters, 2017, 466, 53-61.                                                                                                             | 4.4 | 22        |
| 15 | Three-dimensional imaging of impact of a large igneous province with a subduction zone. Earth and<br>Planetary Science Letters, 2017, 460, 143-151.                                                                                                                   | 4.4 | 30        |
| 16 | Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P- and<br>S-wave attenuation. Geophysical Journal International, 2017, 211, 1032-1045.                                                                                    | 2.4 | 34        |
| 17 | A new scheme for joint surface wave and earthquake travel-time inversion and resulting 3-D velocity<br>model for the western North Island, New Zealand. Physics of the Earth and Planetary Interiors, 2017,<br>269, 98-111.                                           | 1.9 | 6         |
| 18 | Northern California Seismic Attenuation:<br>3D <i>Q</i> <sub><i>P</i></sub> and <i>Q</i> <sub><i>S</i></sub> Models. Bulletin of the Seismological<br>Society of America. 2016. 106. 2558-2573.                                                                       | 2.3 | 18        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Calculating regional stresses for northern Canterbury: the effect of the 2010 Darfield earthquake.<br>New Zealand Journal of Geology, and Geophysics, 2016, 59, 202-212.                                                                          | 1.8  | 5         |
| 20 | Microseismicity and P–wave tomography of the central Alpine Fault, New Zealand. New Zealand<br>Journal of Geology, and Geophysics, 2016, 59, 483-495.                                                                                             | 1.8  | 13        |
| 21 | 3-D imaging of the northern Hikurangi subduction zone, New Zealand: variations in subducted sediment, slab fluids and slow slip. Geophysical Journal International, 2015, 201, 838-855.                                                           | 2.4  | 50        |
| 22 | A 3D <i>Q</i> <sub><i>P</i></sub> Attenuation Model for All of New Zealand. Seismological Research<br>Letters, 2015, 86, 1655-1663.                                                                                                               | 1.9  | 17        |
| 23 | Prolonged Canterbury earthquake sequence linked to widespread weakening of strong crust. Nature<br>Geoscience, 2014, 7, 34-37.                                                                                                                    | 12.9 | 29        |
| 24 | Mantle accommodation of lithospheric shortening as seen by combined surface wave and teleseismic imaging in the South Island, New Zealand. Geophysical Journal International, 2014, 199, 499-513.                                                 | 2.4  | 13        |
| 25 | Imaging P and S attenuation in the termination region of the Hikurangi subduction zone, New Zealand.<br>Geophysical Journal International, 2014, 198, 516-536.                                                                                    | 2.4  | 23        |
| 26 | Depth variable crustal anisotropy, patterns of crustal weakness, and destructive earthquakes in<br>Canterbury, New Zealand. Earth and Planetary Science Letters, 2014, 392, 50-57.                                                                | 4.4  | 7         |
| 27 | Imaging P and S Attenuation in the Sacramento-San Joaquin Delta Region, Northern California.<br>Bulletin of the Seismological Society of America, 2014, 104, 2322-2336.                                                                           | 2.3  | 14        |
| 28 | Along-strike variation in subducting plate seismicity and mantle wedge attenuation related to fluid<br>release beneath the North Island, New Zealand. Physics of the Earth and Planetary Interiors, 2013, 225,<br>12-27.                          | 1.9  | 21        |
| 29 | Revised Interface Geometry for the Hikurangi Subduction Zone, New Zealand. Seismological Research<br>Letters, 2013, 84, 1066-1073.                                                                                                                | 1.9  | 163       |
| 30 | Newly observed, deep slow slip events at the central Hikurangi margin, New Zealand: Implications for<br>downdip variability of slow slip and tremor, and relationship to seismic structure. Geophysical<br>Research Letters, 2013, 40, 5393-5398. | 4.0  | 66        |
| 31 | Imaging the Hikurangi Plate interface region, with improved local-earthquake tomography.<br>Geophysical Journal International, 2012, 190, 1221-1242.                                                                                              | 2.4  | 43        |
| 32 | Tracking repeated subduction of the Hikurangi Plateau beneath New Zealand. Earth and Planetary<br>Science Letters, 2011, 311, 165-171.                                                                                                            | 4.4  | 107       |
| 33 | Influence of the 3D Distribution of Q and Crustal Structure on Ground Motions from the 2003 Mw 7.2<br>Fiordland, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 2010, 100,<br>1225-1240.                              | 2.3  | 13        |
| 34 | Three-dimensional <i>Qp</i> - and <i>Qs</i> -tomography beneath Taiwan orogenic belt: implications for<br>tectonic and thermal structure. Geophysical Journal International, 2010, 180, 891-910.                                                  | 2.4  | 44        |
| 35 | 3-D imaging of Marlborough, New Zealand, subducted plate and strike-slip fault systems. Geophysical<br>Journal International, 2010, , no-no.                                                                                                      | 2.4  | 21        |
| 36 | Crustal heterogeneity highlighted by spatial b-value map in the Wellington region of New Zealand.<br>Geophysical Journal International, 2010, 183, 451-460.                                                                                       | 2.4  | 18        |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Establishing a Versatile 3-D Seismic Velocity Model for New Zealand. Seismological Research Letters, 2010, 81, 992-1000.                                                                                        | 1.9  | 115       |
| 38 | Small earthquakes provide insight into plate coupling and fluid distribution in the Hikurangi subduction zone, New Zealand. Earth and Planetary Science Letters, 2009, 282, 299-305.                            | 4.4  | 67        |
| 39 | Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin,<br>New Zealand. Geochemistry, Geophysics, Geosystems, 2009, 10, .                                            | 2.5  | 142       |
| 40 | Threeâ€dimensional distribution of seismic anisotropy in the Hikurangi subduction zone beneath the central North Island, New Zealand. Journal of Geophysical Research, 2009, 114, .                             | 3.3  | 58        |
| 41 | Three-dimensional attenuation structure of the Hikurangi subduction zone in the central North<br>Island, New Zealand. Geophysical Journal International, 2008, 174, 418-434.                                    | 2.4  | 80        |
| 42 | Threeâ€dimensional attenuation structure of central and southern South Island, New Zealand, from<br>local earthquakes. Journal of Geophysical Research, 2008, 113, .                                            | 3.3  | 50        |
| 43 | Geophysical structure of the Southern Alps Orogen, South Island, New Zealand. Geophysical<br>Monograph Series, 2007, , 47-72.                                                                                   | 0.1  | 14        |
| 44 | Do great earthquakes occur on the Alpine Fault in central South Island, New Zealand?. Geophysical<br>Monograph Series, 2007, , 235-251.                                                                         | 0.1  | 84        |
| 45 | The role of fluids in lower-crustal earthquakes near continental rifts. Nature, 2007, 446, 1075-1078.                                                                                                           | 27.8 | 102       |
| 46 | Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data. Journal of Geophysical Research, 2006, 111, n/a-n/a.                     | 3.3  | 228       |
| 47 | Imaging subduction from the trench to 300 km depth beneath the central North Island, New Zealand, withVpandVp/Vs. Geophysical Journal International, 2006, 165, 565-583.                                        | 2.4  | 196       |
| 48 | Simplified models of the Alpine Fault seismic cycle: stress transfer in the mid-crust. Geophysical<br>Journal International, 2006, 166, 386-402.                                                                | 2.4  | 54        |
| 49 | Bounds on the width of mantle lithosphere flow derived from surface geodetic measurements:<br>application to the central Southern Alps, New Zealand. Geophysical Journal International, 2006, 166,<br>403-417.  | 2.4  | 18        |
| 50 | Three-Dimensional Compressional Wavespeed Model, Earthquake Relocations, and Focal Mechanisms<br>for the Parkfield, California, Region. Bulletin of the Seismological Society of America, 2006, 96,<br>S38-S49. | 2.3  | 202       |
| 51 | Crustal heterogeneity and subduction processes: 3-DVp, Vp/VsandQin the southern North Island, New<br>Zealand. Geophysical Journal International, 2005, 162, 270-288.                                            | 2.4  | 79        |
| 52 | Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand.<br>Geophysical Journal International, 2004, 156, 237-254.                                                           | 2.4  | 107       |
| 53 | New constraints on seismicity in the Wellington region of New Zealand from relocated earthquake hypocentres. Geophysical Journal International, 2004, 158, 1088-1102.                                           | 2.4  | 31        |
| 54 | Earthquake Relocation Using Cross-Correlation Time Delay Estimates Verified with the Bispectrum<br>Method. Bulletin of the Seismological Society of America, 2004, 94, 856-866.                                 | 2.3  | 64        |

Donna Eberhart-Phillips

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Extension and partitioning in an oblique subduction zone, New Zealand: Constraints from three-dimensional numerical modeling. Tectonics, 2003, 22, n/a-n/a.                                                  | 2.8  | 43        |
| 56 | The 2000 Thompson Sound earthquake, New Zealand. New Zealand Journal of Geology, and Geophysics, 2003, 46, 331-341.                                                                                          | 1.8  | 14        |
| 57 | The 2002 Denali Fault Earthquake, Alaska: A Large Magnitude, Slip-Partitioned Event. Science, 2003, 300,<br>1113-1118.                                                                                       | 12.6 | 359       |
| 58 | Estimating Slab Earthquake Response Spectra from a 3D Q Model. Bulletin of the Seismological Society of America, 2003, 93, 2649-2663.                                                                        | 2.3  | 24        |
| 59 | Intermediate-Depth Earthquakes in a Region of Continental Convergence: South Island, New Zealand.<br>Bulletin of the Seismological Society of America, 2003, 93, 85-93.                                      | 2.3  | 17        |
| 60 | Three-dimensional lithospheric structure below the New Zealand Southern Alps. Journal of<br>Geophysical Research, 2002, 107, ESE 6-1-ESE 6-16.                                                               | 3.3  | 36        |
| 61 | Three-dimensional crustal structure in the Southern Alps region of New Zealand from inversion of<br>local earthquake and active source data. Journal of Geophysical Research, 2002, 107, ESE 15-1-ESE 15-20. | 3.3  | 80        |
| 62 | Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara<br>Peninsula, New Zealand. Journal of Geophysical Research, 2002, 107, ESE 3-1.                                | 3.3  | 114       |
| 63 | A focused look at the Alpine fault, New Zealand: Seismicity, focal mechanisms, and stress observations. Journal of Geophysical Research, 2001, 106, 2193-2220.                                               | 3.3  | 132       |
| 64 | A complex, young subduction zone imaged by three-dimensional seismic velocity, Fiordland, New<br>Zealand. Geophysical Journal International, 2001, 146, 731-746.                                             | 2.4  | 73        |
| 65 | TeleseismicPwave delays and modes of shortening the mantle lithosphere beneath South Island, New<br>Zealand. Journal of Geophysical Research, 2000, 105, 21615-21631.                                        | 3.3  | 89        |
| 66 | The <i>M<sub>W</sub></i> 6.2 Cass, New Zealand, earthquake of 24 November 1995: Reverse faulting in a strikeâ€slip region. New Zealand Journal of Geology, and Geophysics, 2000, 43, 255-269.                | 1.8  | 21        |
| 67 | A three-dimensional image of shallow subduction: crustal structure of the Raukumara Peninsula, New<br>Zealand. Geophysical Journal International, 1999, 137, 873-890.                                        | 2.4  | 119       |
| 68 | Local earthquake tomography with flexible gridding. Computers and Geosciences, 1999, 25, 809-818.                                                                                                            | 4.2  | 283       |
| 69 | Continuous Deformation Versus Faulting Through the Continental Lithosphere of New Zealand.<br>Science, 1999, 286, 516-519.                                                                                   | 12.6 | 131       |
| 70 | Upper mantle anisotropy in the New Zealand Region. Geophysical Research Letters, 1999, 26, 1497-1500.                                                                                                        | 4.0  | 73        |
| 71 | Plate interface properties in the Northeast Hikurangi Subduction Zone, New Zealand, from converted seismic waves. Geophysical Research Letters, 1999, 26, 2565-2568.                                         | 4.0  | 71        |
| 72 | Preliminary results from a geophysical study across a modern, continent-continent collisional plate<br>boundary — the Southern Alps, New Zealand. Tectonophysics, 1998, 288, 221-235.                        | 2.2  | 97        |

Donna Eberhart-Phillips

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Seismotectonics of the Loma Prieta, California, region determined from three-dimensionalVp,Vp/Vs, and seismicity. Journal of Geophysical Research, 1998, 103, 21099-21120.                    | 3.3  | 125       |
| 74 | Aftershock sequence parameters in New Zealand. Bulletin of the Seismological Society of America, 1998, 88, 1095-1097.                                                                         | 2.3  | 19        |
| 75 | Continental subduction and three-dimensional crustal structure: The northern South Island, New<br>Zealand. Journal of Geophysical Research, 1997, 102, 11843-11861.                           | 3.3  | 161       |
| 76 | Examination of seismicity in the central Alpine Fault region, South Island, New Zealand. New Zealand<br>Journal of Geology, and Geophysics, 1995, 38, 571-578.                                | 1.8  | 34        |
| 77 | Surface seismic and electrical methods to detect fluids related to faulting. Journal of Geophysical Research, 1995, 100, 12919-12936.                                                         | 3.3  | 153       |
| 78 | Three-dimensional Vp and Vp/Vs structure at Loma Prieta, California, from local earthquake<br>tomography. Geophysical Research Letters, 1995, 22, 3079-3082.                                  | 4.0  | 45        |
| 79 | Initial reference models in local earthquake tomography. Journal of Geophysical Research, 1994, 99,<br>19635-19646.                                                                           | 3.3  | 822       |
| 80 | Near-Field Investigations of the Landers Earthquake Sequence, April to July 1992. Science, 1993, 260, 171-176.                                                                                | 12.6 | 392       |
| 81 | Threeâ€dimensional velocity structure, seismicity, and fault structure in the Parkfield Region, central<br>California. Journal of Geophysical Research, 1993, 98, 15737-15758.                | 3.3  | 248       |
| 82 | Material heterogeneity simplifies the picture: Loma prieta. Bulletin of the Seismological Society of America, 1992, 82, 1964-1968.                                                            | 2.3  | 23        |
| 83 | Relations Among Fault Behavior, Subsurface Geology, and Three-Dimensional Velocity Models. Science, 1991, 253, 651-654.                                                                       | 12.6 | 148       |
| 84 | Preliminary velocity and resistivity models of the Loma Prieta Earthquake region. Geophysical<br>Research Letters, 1990, 17, 1235-1238.                                                       | 4.0  | 43        |
| 85 | Crustal strain near the Big Bend of the San Andreas Fault: Analysis of the Los Padresâ€Tehachapi<br>Trilateration Networks, California. Journal of Geophysical Research, 1990, 95, 1139-1153. | 3.3  | 41        |
| 86 | Threeâ€dimensional <i>P</i> and <i>S</i> velocity structure in the Coalinga Region, California. Journal of Geophysical Research, 1990, 95, 15343-15363.                                       | 3.3  | 223       |
| 87 | Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 1989, 54, 82-89.                                                     | 2.6  | 404       |
| 88 | Seismicity in the Clear Lake area, California, 1975–1983. Special Paper of the Geological Society of America, 1988, , 195-206.                                                                | 0.5  | 2         |