
Philipp Tschandl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7368242/publications.pdf Version: 2024-02-01

Риннов Теснлион

#	Article	IF	CITATIONS
1	Monitoring patients at risk for melanoma: May convolutional neural networks replace the strategy of sequential digital dermoscopy?. European Journal of Cancer, 2022, 160, 180-188.	1.3	7
2	Checklist for Evaluation of Image-Based Artificial Intelligence Reports in Dermatology. JAMA Dermatology, 2022, 158, 90.	2.0	71
3	Subcutaneous nodules on the upper extremity – an unusual presentation of Kimura's disease. JDDG - Journal of the German Society of Dermatology, 2022, 20, 525-527.	0.4	0
4	Combining threeâ€dimensional histopathology with bread loafing and orientation without artificial coloring. Journal of Cutaneous Pathology, 2022, 49, 671-675.	0.7	0
5	Position paper on a simplified histopathological classification of basal cell carcinoma: results of the European Consensus Project. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 351-359.	1.3	13
6	Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge. The Lancet Digital Health, 2022, 4, e330-e339.	5.9	38
7	Guest editorial: Image analysis in dermatology. Medical Image Analysis, 2022, 79, 102468.	7.0	1
8	Assessment of melanoma thickness based on dermoscopy images: an open, webâ€based, international, diagnostic study. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 2002-2007.	1.3	5
9	The dermoscopic inverse approach significantly improves the accuracy of human readers for lentigo maligna diagnosis. Journal of the American Academy of Dermatology, 2021, 84, 381-389.	0.6	19
10	Artificial neural networks and pathologists recognize basal cell carcinomas based on different histological patterns. Modern Pathology, 2021, 34, 895-903.	2.9	20
11	Dermatoscopy of combined blue nevi: a multicentre study of the International Dermoscopy Society. Journal of the European Academy of Dermatology and Venereology, 2021, 35, 900-905.	1.3	6
12	Reproduction of patterns in melanocytic proliferations by agent-based simulation and geometric modeling. PLoS Computational Biology, 2021, 17, e1008660.	1.5	2
13	Skin lesions of face and scalp – Classification by a market-approved convolutional neural network in comparison with 64 dermatologists. European Journal of Cancer, 2021, 144, 192-199.	1.3	19
14	Artificial intelligence for melanoma diagnosis. Italian Journal of Dermatology and Venereology, 2021, 156, .	0.1	9
15	Perilesional sun damage as a diagnostic clue for pigmented actinic keratosis and Bowen's disease. Journal of the European Academy of Dermatology and Venereology, 2021, 35, 2022-2026.	1.3	4
16	Singleâ€cell RNA sequencing profiling in a patient with discordant primary cutaneous Bâ€cell and Tâ€cell lymphoma reveals micromilieuâ€driven immune skewing. British Journal of Dermatology, 2021, 185, 1013-1025.	1.4	13
17	Risk of Bias and Error From Data Sets Used for Dermatologic Artificial Intelligence. JAMA Dermatology, 2021, 157, 1271.	2.0	9
18	A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Scientific Data, 2021, 8, 34.	2.4	165

#	Article	IF	CITATIONS
19	Artificial intelligence for melanoma diagnosis. Italian Journal of Dermatology and Venereology, 2021, 156, 289-299.	0.1	2
20	Standardization of dermoscopic terminology and basic dermoscopic parameters to evaluate in general dermatology (nonâ€neoplastic dermatoses): an expert consensus on behalf of the International Dermoscopy Society. British Journal of Dermatology, 2020, 182, 454-467.	1.4	111
21	Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Annals of Oncology, 2020, 31, 137-143.	0.6	140
22	Problems and Potentials of Automated Object Detection for Skin Cancer Recognition. JAMA Dermatology, 2020, 156, 23.	2.0	6
23	Using contentâ€based image retrieval of dermoscopic images for interpretation and education: A pilot study. Skin Research and Technology, 2020, 26, 503-512.	0.8	11
24	Human surface anatomy terminology for dermatology: a Delphi consensus from the International Skin Imaging Collaboration. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 2659-2663.	1.3	10
25	Cutaneous signs in SARSâ€CoVâ€2 infection: a plea for more rigorous peer review in the time of COVIDâ€19. British Journal of Dermatology, 2020, 183, 1140-1142.	1.4	11
26	The effects of skin lesion segmentation on the performance of dermatoscopic image classification. Computer Methods and Programs in Biomedicine, 2020, 197, 105725.	2.6	61
27	Human–computer collaboration for skin cancer recognition. Nature Medicine, 2020, 26, 1229-1234.	15.2	383
28	Number needed to biopsy ratio and diagnostic accuracy for melanoma detection. Journal of the American Academy of Dermatology, 2020, 83, 780-787.	0.6	8
29	Defining the terminology and parameters that should be used in studies into dermoscopy for nonâ€cancer skin diseases. British Journal of Dermatology, 2020, 182, e61.	1.4	0
30	Attitudes towards artificial intelligence within dermatology: an international online survey. British Journal of Dermatology, 2020, 183, 159-161.	1.4	57
31	Analysis of Collective Human Intelligence for Diagnosis of Pigmented Skin Lesions Harnessed by Gamification Via a Web-Based Training Platform: Simulation Reader Study. Journal of Medical Internet Research, 2020, 22, e15597.	2.1	12
32	Inequalities in the patterns of dermoscopy use and training across Europe: conclusions of the Eurodermoscopy pan-European survey. European Journal of Dermatology, 2020, 30, 524-531.	0.3	1
33	A prospective diagnostic study on povidone–iodine retention in lesions suspected to be squamous cell carcinoma or keratoacanthoma. Australasian Journal of Dermatology, 2019, 60, e33-e39.	0.4	1
34	Artificial Intelligence Approach in Melanoma. , 2019, , 599-628.		5
35	Diagnostic accuracy of dermatoscopic image retrieval. British Journal of Dermatology, 2019, 181, e8.	1.4	1
36	Dermoscopic features of mammary Paget's disease: a retrospective caseâ€control study by the International Dermoscopy Society. Journal of the European Academy of Dermatology and Venereology, 2019, 33, 1892-1898.	1.3	11

#	Article	IF	CITATIONS
37	MUW researcher of the month. Wiener Klinische Wochenschrift, 2019, 131, 582-583.	1.0	Ο
38	Accuracy of Computer-Aided Diagnosis of Melanoma. JAMA Dermatology, 2019, 155, 1291.	2.0	74
39	Artificial Intelligence Approach in Melanoma. , 2019, , 1-31.		5
40	Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncology, The, 2019, 20, 938-947.	5.1	318
41	Diagnostic accuracy of contentâ€based dermatoscopic image retrieval with deep classification features. British Journal of Dermatology, 2019, 181, 155-165.	1.4	59
42	Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks. JAMA Dermatology, 2019, 155, 58.	2.0	199
43	Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation. Computers in Biology and Medicine, 2019, 104, 111-116.	3.9	78
44	Advances in the diagnosis of pigmented skin lesions. British Journal of Dermatology, 2018, 178, 9-11.	1.4	15
45	Driver mutations in the mitogenâ€activated protein kinase pathway: the seeds of good and evil. British Journal of Dermatology, 2018, 178, 26-27.	1.4	25
46	The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 2018, 5, 180161.	2.4	1,426
47	Dermatoscopy of Neoplastic Skin Lesions: Recent Advances, Updates, and Revisions. Current Treatment Options in Oncology, 2018, 19, 56.	1.3	55
48	Multimodal skin lesion classification using deep learning. Experimental Dermatology, 2018, 27, 1261-1267.	1.4	170
49	Sequential digital dermatoscopic imaging of patients with multiple atypical nevi. Dermatology Practical and Conceptual, 2018, 8, 231-237.	0.5	8
50	Sequential digital dermatoscopic imaging of patients with multiple atypical nevi. Dermatology Practical and Conceptual, 2018, 8, 231-237.	0.5	7
51	Palpable Pigmented Lesions on the Trunk. , 2018, , 93-115.		Ο
52	Interoperable Localisation of Lesions on the Human Skin. Studies in Health Technology and Informatics, 2018, 247, 850-854.	0.2	0
53	The impact of dermoscopy on melanoma detection in the practice of dermatologists in Europe: results of a panâ€European survey. Journal of the European Academy of Dermatology and Venereology, 2017, 31, 1148-1156.	1.3	34
54	Update on dermoscopy of Spitz/Reed naevi and management guidelines by the International Dermoscopy Society. British Journal of Dermatology, 2017, 177, 645-655.	1.4	95

#	Article	IF	CITATIONS
55	Langzeitauswertung des Nutzens der digitalen Dermatoskopie an einem Referenzzentrum. JDDG - Journal of the German Society of Dermatology, 2017, 15, 517-523.	0.4	0
56	Longâ€ŧerm evaluation of the efficacy of digital dermatoscopy monitoring at a tertiary referral center. JDDG - Journal of the German Society of Dermatology, 2017, 15, 517-522.	0.4	13
57	Melanomas vs. nevi in highâ€risk patients under longâ€term monitoring with digital dermatoscopy: do melanomas and nevi already differ at baseline?. Journal of the European Academy of Dermatology and Venereology, 2017, 31, 972-977.	1.3	25
58	Accuracy of dermatoscopy for the diagnosis of nonpigmented cancers of the skin. Journal of the American Academy of Dermatology, 2017, 77, 1100-1109.	0.6	84
59	Wait time to seek skin cancer screening in Italy. Journal of the European Academy of Dermatology and Venereology, 2017, 31, e93-e94.	1.3	2
60	A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions. British Journal of Dermatology, 2017, 177, 867-869.	1.4	22
61	Seven Non-melanoma Features to Rule Out Facial Melanoma. Acta Dermato-Venereologica, 2017, 97, 1219-1224.	0.6	18
62	Dermatofibroma looks dermoscopically different on trunk versus extremities. Italian Journal of Dermatology and Venereology, 2017, 152, 333-337.	0.1	0
63	Dermoscopic clues to differentiate facial lentigo maligna from pigmented actinic keratosis. British Journal of Dermatology, 2016, 174, 1079-1085.	1.4	64
64	Impact of oncogenic BRAF mutations and p16 expression on the growth rate of early melanomas and naevi <i>in vivo</i> . British Journal of Dermatology, 2016, 174, 364-370.	1.4	10
65	Cutaneous paraneoplastic disorders in stomach cancer: Collaboration between oncologically active dermatologists and clinical oncologists. Critical Reviews in Oncology/Hematology, 2016, 103, 78-85.	2.0	6
66	Factors driving the use of dermoscopy in Europe: a pan-European survey. British Journal of Dermatology, 2016, 175, 1329-1337.	1.4	28
67	Standardization of terminology in dermoscopy/dermatoscopy: Results of the third consensus conference of the International Society of Dermoscopy. Journal of the American Academy of Dermatology, 2016, 74, 1093-1106.	0.6	207
68	Double-Loop Dermal Suture: A Technique for High-Tension Wound Closure. Aesthetic Surgery Journal, 2016, 36, NP165-NP167.	0.9	9
69	The BRAAFF checklist: a new dermoscopic algorithm forÂdiagnosing acral melanoma. British Journal of Dermatology, 2015, 173, 1041-1049.	1.4	70
70	Teaching dermatoscopy of pigmented skin tumours to novices: comparison of analytic vs. heuristic approach. Journal of the European Academy of Dermatology and Venereology, 2015, 29, 1198-1204.	1.3	23
71	Dermatoscopy of flat pigmented facial lesions. Journal of the European Academy of Dermatology and Venereology, 2015, 29, 120-127.	1.3	77
72	Cutaneous Human Papillomavirus Infection: Manifestations and Diagnosis. Current Problems in Dermatology, 2014, 45, 92-97.	0.8	23

#	Article	IF	CITATIONS
73	Prediction without Pigment: a decision algorithm for non-pigmented skin malignancy. Dermatology Practical and Conceptual, 2014, 4, 59-66.	0.5	22
74	Dysplastic Nevus. Dermatologic Clinics, 2013, 31, 579-588.	1.0	16
75	Trends in the diagnosis of melanoma at a university center over time. JDDG - Journal of the German Society of Dermatology, 2013, 11, 251-256.	0.4	0
76	Zeitliche Trends in der Melanom-Diagnostik an einer Universitäsklinik. JDDG - Journal of the German Society of Dermatology, 2013, 11, 251-256.	0.4	4
77	NRAS and BRAF Mutations in Melanoma-Associated Nevi and Uninvolved Nevi. PLoS ONE, 2013, 8, e69639.	1.1	63
78	Recurrent nevi: report of three cases with dermatoscopic-dermatopathologic correlation. Dermatology Practical and Conceptual, 2013, 3, 29-32.	0.5	11
79	Dermatoscopy: what is your diagnosis?. Dermatology Practical and Conceptual, 2013, 3, 73.	0.5	0
80	Accuracy of the first step of the dermatoscopic 2-step algorithm for pigmented skin lesions. Dermatology Practical and Conceptual, 2012, 2, 43-49.	0.5	14
81	Dermoscopy of Squamous Cell Carcinoma and Keratoacanthoma. Archives of Dermatology, 2012, 148, 1386.	1.7	141
82	Accuracy in melanoma detection: A 10-year multicenter survey. Journal of the American Academy of Dermatology, 2012, 67, 54-59.e1.	0.6	163
83	Systemic mastocytosis associated with chronic myelomonocytic leukemia and xanthogranuloma. Dermatology Practical and Conceptual, 2012, 2, 203a03.	0.5	2
84	A keratoacanthoma with venous invasion. Dermatology Practical and Conceptual, 2012, 2, 204a03.	0.5	8
85	Dermatoscopic pattern of spiradenoma. Dermatology Practical and Conceptual, 2012, 2, 39-40.	0.5	9
86	Dermatoscopy: What is your diagnosis?. Dermatology Practical and Conceptual, 2012, 2, 41-42.	0.5	0
87	Dermatoscopy: What is your diagnosis?. Dermatology Practical and Conceptual, 2012, 2, 51-52.	0.5	0
88	Dermatoscopy: What is your diagnosis?. Dermatology Practical and Conceptual, 2012, 2, 53-54.	0.5	1
89	Differentiation of pigmented Spitz nevi and Reed nevi by integration of dermatopathologic and dermatoscopic findings. Dermatology Practical and Conceptual, 2012, 2, 13-24.	0.5	4
90	Diagnostic accuracy of dermatoscopy for melanocytic and nonmelanocytic pigmented lesions. Journal of the American Academy of Dermatology, 2011, 64, 1068-1073.	0.6	161

#	Article	IF	CITATIONS
91	Growth rate of melanoma in vivo and correlation with dermatoscopic and dermatopathologic findings. Dermatology Practical and Conceptual, 2011, 1, 59-67.	0.5	19
92	Dermatoscopy of pigmented Bowen's disease. Journal of the American Academy of Dermatology, 2010, 62, 597-604.	0.6	133
93	Dermoscopy and entomology (entomodermoscopy). JDDG - Journal of the German Society of Dermatology, 2009, 7, 589-596.	0.4	18
94	Dermatoskopie und Entomologie (Entomodermatoskopie). JDDG - Journal of the German Society of Dermatology, 2009, 7, 589-596.	0.4	20
95	Differentiation of pigmented Spitz nevi and Reed nevi by integration of dermatopathologic and dermatoscopic findings. Dermatology Practical and Conceptual, 0, , 13-24.	0.5	13
96	Growth rate of melanoma in vivo and correlation with dermatoscopic and dermatopathologic findings. Dermatology Practical and Conceptual, 0, , 56-67.	0.5	4