Shantaram Kothavale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7368034/publications.pdf

Version: 2024-02-01

567281 526287 30 723 15 27 citations g-index h-index papers 30 30 30 750 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rational design of CN substituted dibenzo[a,c]phenazine acceptor for color tuning of thermally activated delayed fluorescent emitters. Chemical Engineering Journal, 2022, 431, 134216.	12.7	22
2	Isomer engineering of dipyrido [3,2- <i>a</i> :3â \in 2,4â \in 2- <i>c</i>) phenazine-acceptor-based red thermally activated delayed fluorescent emitters. Journal of Materials Chemistry C, 2022, 10, 6043-6049.	5 . 5	11
3	High efficiency and long lifetime orange-red thermally activated delayed fluorescent organic light emitting diodes by donor and acceptor engineering. Journal of Materials Chemistry C, 2021, 9, 528-536.	5.5	32
4	CNâ€Modified Imidazopyridine as a New Electron Accepting Unit of Thermally Activated Delayed Fluorescent Emitters. Chemistry - A European Journal, 2020, 26, 845-852.	3.3	10
5	Molecular Design Strategy of Thermally Activated Delayed Fluorescent Emitters Using CNâ€Substituted Imidazopyrazine as a New Electronâ€Accepting Unit. Chemistry - an Asian Journal, 2020, 15, 122-128.	3.3	5
6	Three―and Fourâ€Coordinate, Boronâ€Based, Thermally Activated Delayed Fluorescent Emitters. Advanced Optical Materials, 2020, 8, 2000922.	7.3	102
7	Rational Molecular Design of Highly Efficient Yellow-Red Thermally Activated Delayed Fluorescent Emitters: A Combined Effect of Auxiliary Fluorine and Rigidified Acceptor Unit. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18730-18738.	8.0	48
8	Color tuning of dibenzo[<i>a</i> , <i>c</i>)]phenazine-2,7-dicarbonitrile-derived thermally activated delayed fluorescence emitters from yellow to deep-red. Journal of Materials Chemistry C, 2020, 8, 7059-7066.	5. 5	21
9	Yellow-red emitting, methoxy substituted triphenylamine-based styryl derivatives: Synthesis, photophysical properties, viscosity sensitivity, aggregation induced emission, NLO properties, and DFT study. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112027.	3.9	7
10	Triphenylamine and N-phenyl carbazole-based coumarin derivatives: Synthesis, solvatochromism, acidochromism, linear and nonlinear optical properties. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111937.	3.9	43
11	Isomeric Quinoxalinedicarbonitrile as Color-Managing Acceptors of Thermally Activated Delayed Fluorescent Emitters. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17583-17591.	8.0	49
12	Coumarin and Hydroxyl Decorated Viscosity Sensitive Triphenylamine Derivatives: Synthesis, Photophysical Properties, Viscosity Sensitivity, TDâ€DFT, and NLO Properties. ChemistrySelect, 2019, 4, 12512-12523.	1.5	7
13	Auxiliary Methoxy Aided Triphenylamine and Dicyanoisophorone Based Flurophores with Viscosity and Polarity Sensitive Intramolecular Charge Transfer. Journal of Solution Chemistry, 2018, 47, 353-372.	1.2	6
14	Triphenylamine derived coumarin chalcones and their red emitting OBO difluoride complexes: Synthesis, photophysical and NLO property study. Dyes and Pigments, 2018, 148, 474-491.	3.7	44
15	Triphenylamine Derived 3-Acetyl and 3-Benzothiazolyl Bis and Tris Coumarins: Synthesis, Photophysical and DFT Assisted Hyperpolarizability Study. Journal of Electronic Materials, 2018, 47, 1431-1446.	2.2	4
16	NLOphoric rigid pyrazino-phenanthroline donor-Ï€-acceptor compounds: Investigation of structural and solvent effects on non-linear optical properties using computational methods. Optical Materials, 2018, 75, 379-389.	3.6	14
17	Methoxy and Hydroxy Triphenylamine-Based Azo Dyes: Synthesis and Photophysical Properties on Polyester and Nylon Fabrics. AATCC Journal of Research, 2018, 5, 17-26.	0.6	O
18	Highly fluorescent blue-green emitting phenanthroimidazole derivatives: Detail experimental and DFT study of structural and donating group effects on fluorescence properties. Dyes and Pigments, 2018, 159, 209-221.	3.7	20

#	Article	IF	CITATIONS
19	3â€Cyano Imidazopyridine Acceptorâ€based Bipolar and <i>n</i> à€type Host Materials for Phosphorescent Organic Lightâ€Emitting Diodes. Asian Journal of Organic Chemistry, 2018, 7, 2218-2222.	2.7	5
20	NLOphoric multichromophoric auxiliary methoxy aided triphenylamine D-Ï∈-A chromophores – Spectroscopic and computational studies. Optical Materials, 2017, 73, 602-616.	3.6	25
21	Proton Induced Modulation of ICT and PET Processes in an Imidazo-phenanthroline Based BODIPY Fluorophores. Journal of Fluorescence, 2017, 27, 2313-2322.	2.5	15
22	A New Series of Highly Fluorescent Blue-Green Emitting, Imidazole-Based ICT-ESIPT Compounds: Detail Experimental and DFT Study of Structural and Donating Group Effects on Fluorescence Properties. ChemistrySelect, 2017, 2, 7691-7700.	1.5	19
23	Triphenylamineâ€Based Bis―and Trisâ€ESIPT Compounds and Their Boron Complexes: Synthesis, Photophysical Properties and DFT Study of ICT and ESIPT Emissions. ChemistrySelect, 2017, 2, 5013-5024.	1.5	10
24	Deep red emitting triphenylamine based coumarin-rhodamine hybrids with large Stokes shift and viscosity sensing: Synthesis, photophysical properties and DFT studies of their spirocyclic and open forms. Dyes and Pigments, 2017, 137, 329-341.	3.7	46
25	Red emitting triphenylamine based rhodamine analogous with enhanced Stokes shift and viscosity sensitive emission. Dyes and Pigments, 2017, 138, 56-67.	3.7	24
26	Methoxy supported, deep red emitting mono, bis and tris triphenylamine-isophorone based styryl colorants: Synthesis, photophysical properties, ICT, TICT emission and viscosity sensitivity. Dyes and Pigments, 2017, 136, 116-130.	3.7	47
27	Novel pyrazino-phenanthroline based rigid donor-ï€-acceptor compounds: A detail study of optical properties, acidochromism, solvatochromism and structure-property relationship. Dyes and Pigments, 2017, 136, 31-45.	3.7	67
28	Novel triphenylamine based rhodamine derivatives: synthesis, characterization, photophysical properties and viscosity sensitivity. RSC Advances, 2016, 6, 100271-100280.	3.6	6
29	A new type of triphenylamine based coumarin–rhodamine hybrid compound: synthesis, photophysical properties, viscosity sensitivity and energy transfer. RSC Advances, 2016, 6, 105387-105397.	3.6	14
30	Synthesis of Novel Carbazole based Styryl: Rational Approach for Photophysical Properties and TD-DFT. Journal of Fluorescence, 2014, 24, 1457-1472.	2.5	0