## Kristy J Szretter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7367976/publications.pdf Version: 2024-02-01



KDISTV | S7DETTED

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Clinical and virological responses to a broad-spectrum human monoclonal antibody in an influenza<br>virus challenge study. Antiviral Research, 2020, 184, 104763.                                                                        | 1.9  | 13        |
| 2  | Anti-Influenza Antibody VIS410 Targets a Broadly Conserved Epitope on Hemagglutinin. Open Forum<br>Infectious Diseases, 2016, 3, .                                                                                                       | 0.4  | 0         |
| 3  | S6K-STING interaction regulates cytosolic DNA–mediated activation of the transcription factor IRF3.<br>Nature Immunology, 2016, 17, 514-522.                                                                                             | 7.0  | 67        |
| 4  | Safety and Upper Respiratory Pharmacokinetics of the Hemagglutinin Stalk-Binding Antibody VIS410<br>Support Treatment and Prophylaxis Based on Population Modeling of Seasonal Influenza A Outbreaks.<br>EBioMedicine, 2016, 5, 147-155. | 2.7  | 48        |
| 5  | The Hemagglutinin Stem-Binding Monoclonal Antibody VIS410 Controls Influenza Virus-Induced Acute Respiratory Distress Syndrome. Antimicrobial Agents and Chemotherapy, 2016, 60, 2118-2131.                                              | 1.4  | 46        |
| 6  | Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the<br>Orthomyxoviridae, Bunyaviridae, and Filoviridae Families. Journal of Virology, 2015, 89, 9465-9476.                                    | 1.5  | 38        |
| 7  | A broadly neutralizing human monoclonal antibody is effective against H7N9. Proceedings of the<br>National Academy of Sciences of the United States of America, 2015, 112, 10890-10895.                                                  | 3.3  | 67        |
| 8  | Simvastatin and oseltamivir combination therapy does not improve the effectiveness of oseltamivir<br>alone following highly pathogenic avian H5N1 influenza virus infection in mice. Virology, 2013, 439,<br>42-46.                      | 1.1  | 24        |
| 9  | Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nature Medicine, 2013, 19, 458-464.                                               | 15.2 | 187       |
| 10 | 2′-O Methylation of the Viral mRNA Cap by West Nile Virus Evades Ifit1-Dependent and -Independent<br>Mechanisms of Host Restriction In Vivo. PLoS Pathogens, 2012, 8, e1002698.                                                          | 2.1  | 142       |
| 11 | IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nature Immunology, 2012, 13, 753-760.                                                                                       | 7.0  | 773       |
| 12 | Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature Immunology, 2011, 12, 137-143.                                                             | 7.0  | 640       |
| 13 | The Interferon-Inducible Gene viperin Restricts West Nile Virus Pathogenesis. Journal of Virology, 2011, 85, 11557-11566.                                                                                                                | 1.5  | 130       |
| 14 | 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 2010, 468, 452-456.                                                                                                                       | 13.7 | 736       |
| 15 | The Innate Immune Adaptor Molecule MyD88 Restricts West Nile Virus Replication and Spread in Neurons of the Central Nervous System. Journal of Virology, 2010, 84, 12125-12138.                                                          | 1.5  | 96        |
| 16 | Mice Lacking Both TNF and ILâ€1 Receptors Exhibit Reduced Lung Inflammation and Delay in Onset of<br>Death following Infection with a Highly Virulent H5N1 Virus. Journal of Infectious Diseases, 2010, 202,<br>1161-1170.               | 1.9  | 91        |
| 17 | Pathogenesis of 1918 Pandemic and H5N1 Influenza Virus Infections in a Guinea Pig Model: Antiviral<br>Potential of Exogenous Alpha Interferon To Reduce Virus Shedding. Journal of Virology, 2009, 83,<br>2851-2861.                     | 1.5  | 89        |
| 18 | Induction of IFN-β and the Innate Antiviral Response in Myeloid Cells Occurs through an<br>IPS-1-Dependent Signal That Does Not Require IRF-3 and IRF-7. PLoS Pathogens, 2009, 5, e1000607.                                              | 2.1  | 118       |

Kristy J Szretter

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Immune Adaptor Molecule SARM Modulates Tumor Necrosis Factor Alpha Production and<br>Microglia Activation in the Brainstem and Restricts West Nile Virus Pathogenesis. Journal of Virology,<br>2009, 83, 9329-9338. | 1.5 | 141       |
| 20 | Early Control of H5N1 Influenza Virus Replication by the Type I Interferon Response in Mice. Journal of Virology, 2009, 83, 5825-5834.                                                                                  | 1.5 | 93        |
| 21 | Chapter 2 Use of Animal Models to Understand the Pandemic Potential of Highly Pathogenic Avian<br>Influenza Viruses. Advances in Virus Research, 2009, 73, 55-97.                                                       | 0.9 | 80        |
| 22 | Pathogenesis of emerging avian influenza viruses in mammals and the host innate immune response.<br>Immunological Reviews, 2008, 225, 68-84.                                                                            | 2.8 | 159       |
| 23 | DAS181, A Novel Sialidase Fusion Protein, Protects Mice from Lethal Avian Influenza H5N1 Virus<br>Infection. Journal of Infectious Diseases, 2007, 196, 1493-1499.                                                      | 1.9 | 122       |
| 24 | The <i>Mx1</i> Gene Protects Mice against the Pandemic 1918 and Highly Lethal Human H5N1 Influenza<br>Viruses. Journal of Virology, 2007, 81, 10818-10821.                                                              | 1.5 | 161       |
| 25 | Role of Host Cytokine Responses in the Pathogenesis of Avian H5N1 Influenza Viruses in Mice. Journal of Virology, 2007, 81, 2736-2744.                                                                                  | 1.5 | 369       |
| 26 | Influenza: Propagation, Quantification, and Storage. Current Protocols in Microbiology, 2006, 3, Unit<br>15G.1.                                                                                                         | 6.5 | 230       |
| 27 | Cross-protective immunity in mice induced by live-attenuated or inactivated vaccines against highly pathogenic influenza A (H5N1) viruses. Vaccine, 2006, 24, 6588-6593.                                                | 1.7 | 96        |
| 28 | Avian Influenza (H5N1) Viruses Isolated from Humans in Asia in 2004 Exhibit Increased Virulence in<br>Mammals. Journal of Virology, 2005, 79, 11788-11800.                                                              | 1.5 | 429       |