
Gianfranco Romanazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7367563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 2016, 122, 82-94.	6.0	305
2	Effects of Pre- and Postharvest Chitosan Treatments to Control Storage Grey Mold of Table Grapes. Journal of Food Science, 2002, 67, 1862-1867.	3.1	234
3	Recent advances on the use of natural and safe alternatives to conventional methods to control postharvest gray mold of table grapes. Postharvest Biology and Technology, 2012, 63, 141-147.	6.0	211
4	Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 2017, 57, 579-601.	10.3	208
5	Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology, 2016, 113, 69-76.	6.0	198
6	GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biology and Technology, 2016, 122, 41-52.	6.0	186
7	Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biology and Technology, 2013, 75, 24-27.	6.0	152
8	Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Management Science, 2014, 70, 860-868.	3.4	123
9	Effect of Chitosan Dissolved in Different Acids on Its Ability to Control Postharvest Gray Mold of Table Grape. Phytopathology, 2009, 99, 1028-1036.	2.2	119
10	Chitosan, a Biopolymer With Triple Action on Postharvest Decay of Fruit and Vegetables: Eliciting, Antimicrobial and Film-Forming Properties. Frontiers in Microbiology, 2018, 9, 2745.	3.5	114
11	Circulating plasma factors induce tubular and glomerular alterations in septic burns patients. Critical Care, 2008, 12, R42.	5.8	113
12	Preharvest Chitosan and Postharvest UV Irradiation Treatments Suppress Gray Mold of Table Grapes. Plant Disease, 2006, 90, 445-450.	1.4	110
13	Pre- and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry. Postharvest Biology and Technology, 2013, 78, 133-138.	6.0	109
14	Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. International Journal of Food Microbiology, 2018, 265, 18-22.	4.7	107
15	Short hypobaric treatments potentiate the effect of chitosan in reducing storage decay of sweet cherries. Postharvest Biology and Technology, 2003, 29, 73-80.	6.0	104
16	Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. Journal of Berry Research, 2016, 6, 47-63.	1.4	98
17	Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Biology and Technology, 2001, 22, 1-6.	6.0	97
18	Polymyxin-B hemoperfusion inactivates circulating proapoptotic factors. Intensive Care Medicine, 2008, 34, 1638-1645.	8.2	97

#	Article	IF	CITATIONS
19	Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation. NMR in Biomedicine, 2007, 20, 40-48.	2.8	85
20	Combination of chitosan and ethanol to control postharvest gray mold of table grapes. Postharvest Biology and Technology, 2007, 45, 134-140.	6.0	84
21	Expression of Defense Genes in Strawberry Fruits Treated with Different Resistance Inducers. Journal of Agricultural and Food Chemistry, 2014, 62, 3047-3056.	5.2	83
22	Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant Pathology, 2016, 65, 691-703.	2.4	83
23	Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydrate Polymers, 2015, 132, 111-117.	10.2	82
24	A review of the use of biostimulants in the vineyard for improved grape and wine quality: effects on prevention of grapevine diseases. Journal of the Science of Food and Agriculture, 2019, 99, 1001-1009.	3.5	66
25	Effects of chitosan treatment on avocado postharvest diseases and expression of phenylalanine ammonia-lyase, chitinase and lipoxygenase genes. Postharvest Biology and Technology, 2019, 147, 214-221.	6.0	66
26	Exposure to volatiles of essential oils alone or under hypobaric treatment to control postharvest gray mold of table grapes. Postharvest Biology and Technology, 2017, 133, 36-40.	6.0	60
27	Global Transcriptome Analysis and Identification of Differentially Expressed Genes in Strawberry after Preharvest Application of Benzothiadiazole and Chitosan. Frontiers in Plant Science, 2017, 8, 235.	3.6	59
28	Application of low concentrations of ozone during the cold storage of table grapes. Postharvest Biology and Technology, 2014, 93, 38-48.	6.0	55
29	Effectiveness of a short hyperbaric treatment to control postharvest decay of sweet cherries and table grapes. Postharvest Biology and Technology, 2008, 49, 440-442.	6.0	54
30	Impact of Alternative Fungicides on Grape Downy Mildew Control and Vine Growth and Development. Plant Disease, 2016, 100, 739-748.	1.4	54
31	Effects of grapevine cultivar, rootstock and clone on esca disease. Australasian Plant Pathology, 2014, 43, 215-221.	1.0	51
32	Preharvest Fungicide, Potassium Sorbate, or Chitosan Use on Quality and Storage Decay of Table Grapes. Plant Disease, 2013, 97, 307-314.	1.4	50
33	Different defense responses and brown rot control in two Prunus persica cultivars to essential oil vapours after storage. Postharvest Biology and Technology, 2016, 119, 9-17.	6.0	49
34	Esca in young and mature vineyards, and molecular diagnosis of the associated fungi. European Journal of Plant Pathology, 2009, 125, 277-290.	1.7	47
35	Macrophage Stimulating Protein May Promote Tubular Regeneration after Acute Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 1904-1918.	6.1	46
36	Effects of grapevine leafroll associated virus 3 infection on growth, leaf gas exchange, yield and basic fruit chemistry of Vitis vinifera L. cv. Cabernet Franc. Scientia Horticulturae, 2014, 170, 228-236.	3.6	45

#	Article	IF	CITATIONS
37	Effects of an Innovative Strategy to Contain Grapevine Bois Noir: Field Treatment with Resistance Inducers. Phytopathology, 2013, 103, 785-791.	2.2	44
38	Quality and safety attributes on shredded carrots by using Origanum majorana and ascorbic acid. Postharvest Biology and Technology, 2019, 155, 120-129.	6.0	44
39	Biocontrol of postharvest brown rot of sweet cherries by Saccharomyces cerevisiae Disva 599, Metschnikowia pulcherrima Disva 267 and Wickerhamomyces anomalus Disva 2 strains. Postharvest Biology and Technology, 2014, 96, 64-68.	6.0	43
40	Chitosan and postharvest decay of fresh fruit: Metaâ€analysis of disease control and antimicrobial and eliciting activities. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 563-582.	11.7	43
41	Postharvest ethanol and potassium sorbate treatments of table grapes to control gray mold. Postharvest Biology and Technology, 2005, 37, 129-134.	6.0	42
42	Chitosan and Laminarin as Alternatives to Copper for <i>Plasmopara viticola</i> Control: Effect on Grape Amino Acid. Journal of Agricultural and Food Chemistry, 2017, 65, 7379-7386.	5.2	42
43	Seasonal Variation of Defense-Related Gene Expression in Leaves from Bois noir Affected and Recovered Grapevines. Journal of Agricultural and Food Chemistry, 2011, 59, 6628-6637.	5.2	39
44	Genetic variability of the stolbur phytoplasma vmp1 gene in grapevines, bindweeds and vegetables. Journal of Applied Microbiology, 2010, 109, 2049-2059.	3.1	37
45	In-vineyard population structure of †Candidatus Phytoplasma solani' using multilocus sequence typing analysis. Infection, Genetics and Evolution, 2015, 31, 221-230.	2.3	37
46	Antifungal Activity and Chemical Composition of Seven Essential Oils to Control the Main Seedborne Fungi of Cucurbits. Antibiotics, 2021, 10, 104.	3.7	33
47	Effects of Bois noir on carbon assimilation, transpiration, stomatal conductance of leaves and yield of grapevine (<i>Vitis vinifera</i>) cv. Chardonnay. Physiologia Plantarum, 2012, 145, 286-295.	5.2	31
48	Botrytis cinerea (Gray Mold). , 2014, , 131-146.		31
49	Evaluation of the characteristics of vineyard pruning residues for energy applications: effect of different copper-based treatments. Journal of Agricultural Engineering, 2016, 47, 22.	1.5	31
50	A review on the management of postharvest anthracnose in dragon fruits caused by Colletotrichum spp Crop Protection, 2020, 130, 105067.	2.1	31
51	Endophytic Fungi as Potential Biological Control Agents against Grapevine Trunk Diseases in Alentejo Region. Biology, 2020, 9, 420.	2.8	28
52	Basic Substances, a Sustainable Tool to Complement and Eventually Replace Synthetic Pesticides in the Management of Pre and Postharvest Diseases: Reviewed Instructions for Users. Molecules, 2022, 27, 3484.	3.8	28
53	The Role of Fungi in the Cocoa Production Chain and the Challenge of Climate Change. Journal of Fungi (Basel, Switzerland), 2021, 7, 202.	3.5	24
54	Preharvest application of synthetic fungicides and alternative treatments to control postharvest decay of fruit. Stewart Postharvest Review, 0, 9, 1-6.	0.7	24

#	Article	IF	CITATIONS
55	Colonization of <i>Vitis</i> spp. Wood by sGFP-Transformed <i>Phaeomoniella chlamydospora</i> , a Tracheomycotic Fungus Involved in Esca Disease. Phytopathology, 2012, 102, 290-297.	2.2	23
56	Genetic Variability of Stolbur Phytoplasma in <i>Hyalesthes obsoletus</i> (Hemiptera: Cixiidae) and its Main Host Plants in Vineyard Agroecosystems. Journal of Economic Entomology, 2015, 108, 1506-1515.	1.8	22
57	Genome sequence of the brown rot fungal pathogen Monilinia fructigena. BMC Research Notes, 2018, 11, 758.	1.4	21
58	New High-Quality Draft Genome of the Brown Rot Fungal Pathogen Monilinia fructicola. Genome Biology and Evolution, 2019, 11, 2850-2855.	2.5	21
59	Biocontrol of Non-Saccharomyces Yeasts in Vineyard against the Gray Mold Disease Agent Botrytis cinerea. Microorganisms, 2022, 10, 200.	3.6	21
60	Genetic variability and population structure of Grapevine virus A coat protein gene from naturally infected Italian vines. European Journal of Plant Pathology, 2008, 120, 137-145.	1.7	20
61	Interâ€laboratory validation of PCRâ€based protocol for detection of olive viruses. EPPO Bulletin, 2010, 40, 423-428.	0.8	20
62	Effect of thyme oil vapour exposure on the brown rot infection, phenylalanine ammonia-lyase (PAL) activity, phenolic content and antioxidant activity in red and yellow skin peach cultivars. Scientia Horticulturae, 2017, 214, 195-199.	3.6	20
63	Spatial and temporal stolbur population structure in a cv. Chardonnay vineyard according to <i>vmp1</i> gene characterization. Plant Pathology, 2014, 63, 700-707.	2.4	19
64	Partial Uprooting and Pulling to Induce Recovery in Bois noirâ€Infected Grapevines. Journal of Phytopathology, 2008, 156, 747-750.	1.0	18
65	Use of biocontrol agents as potential tools in the management of chestnut blight. Biological Control, 2019, 132, 102-109.	3.0	18
66	Chitosan Coating Enriched With Ruta graveolens L. Essential Oil Reduces Postharvest Anthracnose of Papaya (Carica papaya L.) and Modulates Defense-Related Gene Expression. Frontiers in Plant Science, 2021, 12, 765806.	3.6	18
67	Potassium application to table grape clusters after veraison increases soluble solids by enhancing berry water loss. Scientia Horticulturae, 2015, 187, 58-64.	3.6	16
68	Draft Genomic Resources for the Brown Rot Fungal Pathogen <i>Monilinia laxa</i> . Molecular Plant-Microbe Interactions, 2020, 33, 145-148.	2.6	16
69	Use of Chitosan and Other Natural Compounds Alone or in Different Strategies with Copper Hydroxide for Control of Grapevine Downy Mildew. Plant Disease, 2021, 105, 3261-3268.	1.4	16
70	A Low-Cost, Low-Power and Real-Time Image Detector for Grape Leaf Esca Disease Based on a Compressed CNN. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11, 468-481.	3.6	16
71	Detection of â€~Candidatus Phytoplasma solani' in roots from Bois noir symptomatic and recovered grapevines. Scientific Reports, 2019, 9, 2013.	3.3	14
72	EFFECTS OF CHITOSAN IN THE CONTROL OF POSTHARVEST ANTHRACNOSE OF SOURSOP (Annona muricata) FRUIT. Revista Mexicana De Ingeniera Quimica, 2019, 19, 99-108.	0.4	14

#	Article	IF	CITATIONS
73	Tracking of Diversity and Evolution in the Brown Rot Fungi Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Frontiers in Microbiology, 2022, 13, 854852.	3.5	14
74	ldentification of new -J and -K 16SrXII subgroups and distinct single nucleotide polymorphism genetic lineages among â€~Candidatus Phytoplasma solani' strains associated with bois noir in Central Italy. Australasian Plant Pathology, 2017, 46, 31-34.	1.0	13
75	Phenotypic and Molecular Investigations on Hypovirulent <i>Cryphonectria parasitica</i> in Italy. Plant Disease, 2018, 102, 540-545.	1.4	13
76	Morphological and Molecular Identification of Seedborne Fungi in Squash (<i>Cucurbita maxima</i> ,) Tj ETQqO	0 0 rgBT /(1.4	Overlock 10 T
77	A Comprehensive Review on the Impact of Edible Coatings, Essential Oils, and Their Nano Formulations on Postharvest Decay Anthracnose of Avocados, Mangoes, and Papayas. Frontiers in Microbiology, 2021, 12, 711092.	3.5	13
78	Evaluation of Seven Essential Oils as Seed Treatments against Seedborne Fungal Pathogens of Cucurbita maxima. Molecules, 2021, 26, 2354.	3.8	12
79	Spatial pattern of Bois noir: case study of a delicate balance between disease progression and recovery. Scientific Reports, 2020, 10, 9801.	3.3	11
80	Efficacy of pterostilbene suppression of postharvest gray mold in table grapes and potential mechanisms. Postharvest Biology and Technology, 2022, 183, 111745.	6.0	11
81	Molecular Typing of â€~ <i>Candidatus</i> Phytoplasma solani' in Iranian Vineyards. Plant Disease, 2019, 103, 2412-2416.	1.4	10
82	Platelet-Activating Factor Synthesis and Response on Pancreatic Islet Endothelial Cells: Relevance for Islet Transplantation. Transplantation, 2006, 81, 511-518.	1.0	9
83	Surveys for <i>Monilinia</i> spp. on stone fruit in central-eastern Italy. Acta Horticulturae, 2016, , 225-230.	0.2	8
84	Sequence Analysis of New Tuf Molecular Types of â€~Candidatus Phytoplasma Solani' in Iranian Vineyards. Pathogens, 2020, 9, 508.	2.8	8
85	Analyses of Xylem Vessel Size on Grapevine Cultivars and Relationship with Incidence of Esca Disease, a Threat to Grape Quality. Applied Sciences (Switzerland), 2022, 12, 1177.	2.5	8
86	CERCOSPORIOSIS OF OLIVE IN APULIA AND ATTEMPTS TO CONTROL THE DISEASE. Acta Horticulturae, 2002, , 773-776.	0.2	7
87	Use of Chitosan to Control Postharvest Decay of Temperate Fruit: Effectiveness and Mechanisms of Action. , 2016, , 155-177.		6
88	Sixty Years from the First Disease Description, a Novel Badnavirus Associated with Chestnut Mosaic Disease. Phytopathology, 2021, 111, 1051-1058.	2.2	6
89	<i>Tussilago farfara</i> : a new natural host of stolbur phytoplasma. Plant Pathology, 2009, 58, 392-392.	2.4	5
90	Preharvest treatments with alternatives to conventional fungicides to control postharvest decay of strawberry. Acta Horticulturae, 2016, , 111-118.	0.2	5

#	Article	IF	CITATIONS
91	Multilocus Genotyping Reveals New Molecular Markers for Differentiating Distinct Genetic Lineages among "Candidatus Phytoplasma Solani―Strains Associated with Grapevine Bois Noir. Pathogens, 2020, 9, 970.	2.8	5
92	Hypobaric Packaging Prolongs the Shelf Life of Refrigerated Black Truffles (Tuber melanosporum). Molecules, 2020, 25, 3837.	3.8	5
93	Non-Chemical Treatments for the Pre- and Post-Harvest Elicitation of Defense Mechanisms in the Fungi–Avocado Pathosystem. Molecules, 2021, 26, 6819.	3.8	5
94	Brassica carinata Seed Meal as Soil Amendment and Potential Biofumigant. Crops, 2022, 2, 233-246.	1.4	5
95	â€~ <i>Candidatus</i> Phytoplasma ulmi' causing yellows in <i>Zelkova serrata</i> newly reported in Italy. Plant Pathology, 2008, 57, 1174-1174.	2.4	4
96	Postharvest diseases of Tuber melanosporum. Acta Horticulturae, 2016, , 129-132.	0.2	4
97	Activity of endophytic fungi from <i>Artemisia absinthium</i> on <i>Botrytis cinerea</i> . Acta Horticulturae, 2016, , 101-104.	0.2	4
98	Integrated Management of Phytoplasma Diseases. , 2019, , 237-258.		4
99	Epidemiological Investigations and Molecular Characterization of â€~Candidatus Phytoplasma solani' in Grapevines, Weeds, Vectors and Putative Vectors in Western Sicily (Southern Italy). Pathogens, 2020, 9, 918.	2.8	4
100	EFFECT OF FIELD TREATMENTS WITH FUNGICIDE, POTASSIUM SORBATE, OR CHITOSAN ON POSTHARVEST ROTS AND QUALITY OF TABLE GRAPES. Acta Horticulturae, 2014, , 257-264.	0.2	3
101	Status of Charcoal Canker on Oak Trees at a Site of Community Importance: Case Study of the Relict Castelfidardo Forest (SIC Area IT520008, Castelfidardo, AN, Italy). Forests, 2021, 12, 1032.	2.1	3
102	The Mycorrizal Status in Vineyards Affected by Esca. Journal of Fungi (Basel, Switzerland), 2021, 7, 869.	3.5	3
103	Gray Mold Infection of Actinidia arguta in Italy. Plant Disease, 2009, 93, 1221-1221.	1.4	3
104	Perspectives for the management of phytoplasma diseases through induced resistance: what can we expect from resistance inducers?. Phytopathogenic Mollicutes, 2013, 3, 60.	0.1	3
105	Multilocus Genotyping of â€`Candidatus Phytoplasma Solani' Associated with Grapevine Bois Noir in Iran. Biology, 2022, 11, 835.	2.8	3
106	Control Strategies for Postharvest Grey Mould on Fruit Crops. , 2016, , 217-228.		2
107	Protocol for the evaluation of data concerning the necessity of the application of fungicide active substances to control a serious danger to plant health which cannot be contained by other available means, including nonâ€chemical methods. EFSA Supporting Publications, 2017, 14, 1345E.	0.7	2
108	Innovation in Sustainable Management of Plant Diseases and Pests, and Effects on the Environment. , 2020, , 601-616.		2

#	Article	IF	CITATIONS
109	Use of Essential Oils to Improve Postharvest Quality and Control Postharvest Decay of Tropical, Subtropical, and Temperate Fruits. , 2019, , 659-676.		2
110	Detection and Quantification of Stagonosporopsis cucurbitacearum in Seeds of Cucurbita maxima Using Droplet Digital Polymerase Chain Reaction. Frontiers in Microbiology, 2021, 12, 764447.	3.5	2
111	NATURAL AND SAFE ALTERNATIVES TO CONVENTIONAL METHODS TO CONTROL GRAY MOLD OF TABLE GRAPES IN STORAGE. Acta Horticulturae, 2011, , 161-168.	0.2	1
112	USE OF RESISTANCE INDUCERS TO CONTROL STORAGE DECAY OF SWEET CHERRY. Acta Horticulturae, 2014, , 227-235.	0.2	1
113	Effects of field treatments with alternatives to conventional fungicides on strawberry fruit quality parameters and postharvest decay. Acta Horticulturae, 2016, , 317-324.	0.2	1
114	Preservation of Berries. , 2019, , 503-505.		1
115	Influence on grape aromatic compounds of natural fungicides used for the control of downy mildew. Journal of the Science of Food and Agriculture, 2022, , .	3.5	0