Pengfei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7367552/publications.pdf

Version: 2024-02-01

76 papers 4,663 citations

36 h-index 66 g-index

81 all docs

81 docs citations

81 times ranked

5107 citing authors

#	Article	IF	CITATIONS
1	Smart Human Serum Albumin-Indocyanine Green Nanoparticles Generated by Programmed Assembly for Dual-Modal Imaging-Guided Cancer Synergistic Phototherapy. ACS Nano, 2014, 8, 12310-12322.	14.6	632
2	Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. ACS Nano, 2018, 12, 8145-8159.	14.6	281
3	An Allâ€Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance between Radiative and Nonradiative Decays for Multimodal Imagingâ€Guided Synergistic Therapy. Advanced Materials, 2020, 32, e2003210.	21.0	259
4	lonization and Anionâ^ïë ⁺ Interaction: A New Strategy for Structural Design of Aggregation-Induced Emission Luminogens. Journal of the American Chemical Society, 2017, 139, 16974-16979.	13.7	201
5	Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano, 2019, 13, 11283-11293.	14.6	199
6	Exploration of biocompatible AlEgens from natural resources. Chemical Science, 2018, 9, 6497-6502.	7.4	167
7	Corannuleneâ€Incorporated AIE Nanodots with Highly Suppressed Nonradiative Decay for Boosted Cancer Phototheranostics In Vivo. Advanced Materials, 2018, 30, e1801065.	21.0	163
8	Natural-Killer-Cell-Inspired Nanorobots with Aggregation-Induced Emission Characteristics for Near-Infrared-II Fluorescence-Guided Glioma Theranostics. ACS Nano, 2020, 14, 11452-11462.	14.6	156
9	Click-Functionalized Compact Quantum Dots Protected by Multidentate-Imidazole Ligands: Conjugation-Ready Nanotags for Living-Virus Labeling and Imaging. Journal of the American Chemical Society, 2012, 134, 8388-8391.	13.7	133
10	Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer Phototherapy <i>via</i> Type I PDT and PTT. ACS Nano, 2022, 16, 4162-4174.	14.6	121
11	AlEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: Aflatoxin B1 and cyclopiazonic acid as an example. Biosensors and Bioelectronics, 2021, 182, 113188.	10.1	109
12	Red/NIRâ€Emissive Benzo[<i>d</i>) jimidazoleâ€Cored AlEgens: Facile Molecular Design for Wavelength Extending and In Vivo Tumor Metabolic Imaging. Advanced Materials, 2018, 30, e1805220.	21.0	106
13	An Easily Available Ratiometric Reaction-Based AIE Probe for Carbon Monoxide Light-up Imaging. Analytical Chemistry, 2019, 91, 9388-9392.	6.5	100
14	Ultrabright red AlEgens for two-photon vascular imaging with high resolution and deep penetration. Chemical Science, 2018, 9, 2705-2710.	7.4	98
15	A Simple Approach to Bioconjugation at Diverse Levels: Metal-Free Click Reactions of Activated Alkynes with Native Groups of Biotargets without Prefunctionalization. Research, 2018, 2018, 3152870.	5.7	86
16	A Biomimetic Aggregationâ€Induced Emission Photosensitizer with Antigenâ€Presenting and Hitchhiking Function for Lipid Droplet Targeted Photodynamic Immunotherapy. Advanced Materials, 2021, 33, e2102322.	21.0	83
17	Rational Design of Perylenediimideâ€Substituted Triphenylethylene to Electron Transporting Aggregationâ€Induced Emission Luminogens (AlEgens) with High Mobility and Nearâ€Infrared Emission. Advanced Functional Materials, 2018, 28, 1705609.	14.9	82
18	Scaffolds biomimicking macrophages for a glioblastoma NIR-lb imaging guided photothermal therapeutic strategy by crossing Blood-Brain Barrier. Biomaterials, 2019, 211, 48-56.	11.4	77

#	Article	IF	Citations
19	Planar AlEgens with Enhanced Solidâ€State Luminescence and ROS Generation for Multidrugâ€Resistant Bacteria Treatment. Angewandte Chemie - International Edition, 2020, 59, 10179-10185.	13.8	76
20	Aptamer-Decorated Self-Assembled Aggregation-Induced Emission Organic Dots for Cancer Cell Targeting and Imaging. Analytical Chemistry, 2018, 90, 1063-1067.	6.5	70
21	Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging. Chemical Science, 2020, 11, 8157-8166.	7.4	70
22	Ultrafast and Noninvasive Long-Term Bioimaging with Highly Stable Red Aggregation-Induced Emission Nanoparticles. Analytical Chemistry, 2019, 91, 3467-3474.	6.5	62
23	A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. Journal of Materials Chemistry B, 2018, 6, 3894-3903.	5.8	60
24	Dyeâ€Anchored MnO Nanoparticles Targeting Tumor and Inducing Enhanced Phototherapy Effect via Mitochondriaâ€Mediated Pathway. Small, 2018, 14, e1801008.	10.0	58
25	A New Strategy toward "Simple―Waterâ€Soluble AIE Probes for Hypoxia Detection. Advanced Functional Materials, 2019, 29, 1903278.	14.9	58
26	Polyyne bridged AIE luminogens with red emission: design, synthesis, properties and applications. Journal of Materials Chemistry B, 2017, 5, 1650-1657.	5.8	50
27	Highly Stable and Bright NIR-II AIE Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applied Materials & Dots for Identification of Ureter. ACS Applie	8.0	50
28	Fluorescence Selfâ€Reporting Precipitation Polymerization Based on Aggregationâ€Induced Emission for Constructing Optical Nanoagents. Angewandte Chemie - International Edition, 2020, 59, 10122-10128.	13.8	47
29	The synthesis of novel AIE emitters with the triphenylethene-carbazole skeleton and para-/meta-substituted arylboron groups and their application in efficient non-doped OLEDs. Journal of Materials Chemistry C, 2016, 4, 1228-1237.	5.5	46
30	Enhancing the ROS generation ability of a rhodamine-decorated iridium(<scp>iii</scp>) complex by ligand regulation for endoplasmic reticulum-targeted photodynamic therapy. Chemical Science, 2020, 11, 12212-12220.	7.4	46
31	Lipid Dropletâ€Targetable Fluorescence Guided Photodynamic Therapy of Cancer Cells with an Activatable AlEâ€Active Fluorescent Probe for Hydrogen Peroxide. Advanced Optical Materials, 2020, 8, 2001119.	7.3	46
32	Immunocyte Membrane-Coated Nanoparticles for Cancer Immunotherapy. Cancers, 2021, 13, 77.	3.7	46
33	Lysosome-Targeting Red-Emitting Aggregation-Induced Emission Probe with Large Stokes Shift for Light-Up <i>in Situ</i> Visualization of l^2 - <i>N</i> -Acetylhexosaminidase. Analytical Chemistry, 2019, 91, 12611-12614.	6.5	42
34	Intelligent photothermal dendritic cells restart the cancer immunity cycle through enhanced immunogenic cell death. Biomaterials, 2021, 279, 121228.	11.4	41
35	Redox-responsive dextran based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically targeted photodynamic therapy. Biomaterials Science, 2017, 5, 762-771.	5.4	40
36	Supramolecular Polymerization with Dynamic Self-Sorting Sequence Control. Macromolecules, 2019, 52, 8814-8825.	4.8	40

#	Article	IF	CITATIONS
37	SwissKnife-Inspired Multifunctional Fluorescence Probes for Cellular Organelle Targeting Based on Simple AlEgens. Analytical Chemistry, 2019, 91, 2169-2176.	6.5	40
38	Enhanced performance of an electrochemical aptasensor for real-time detection of vascular endothelial growth factor (VEGF) by nanofabrication and ratiometric measurement. Analytica Chimica Acta, 2020, 1121, 74-82.	5.4	36
39	Highly Bright and Compact Alloyed Quantum Rods with Near Infrared Emitting: a Potential Multifunctional Nanoplatform for Multimodal Imaging In Vivo. Advanced Functional Materials, 2014, 24, 3897-3905.	14.9	34
40	Centimeter-Deep NIR-II Fluorescence Imaging with Nontoxic AIE Probes in Nonhuman Primates. Research, 2020, 2020, 4074593.	5.7	33
41	Synthesis of an efficient far-red/near-infrared luminogen with AIE characteristics for <i>in vivo</i> bioimaging applications. Chemical Communications, 2019, 55, 5615-5618.	4.1	32
42	An easily available ratiometric AIE probe for peroxynitrite in vitro and in vivo imaging. Sensors and Actuators B: Chemical, 2021, 329, 129223.	7.8	31
43	Synergistic Enhancement of Fluorescence and Magnetic Resonance Signals Assisted by Albumin Aggregate for Dual-Modal Imaging. ACS Nano, 2021, 15, 9924-9934.	14.6	27
44	Novel strategy to prepare fluorescent polymeric nanoparticles based on aggregation-induced emission <i>via </i> precipitation polymerization for fluorescent lateral flow assay. Materials Chemistry Frontiers, 2021, 5, 2452-2458.	5.9	25
45	Development of AlEgen–montmorillonite nanocomposite powders for computer-assisted visualization of latent fingermarks. Materials Chemistry Frontiers, 2020, 4, 2131-2136.	5.9	24
46	Bonsai-inspired AIE nanohybrid photosensitizer based on vermiculite nanosheets for ferroptosis-assisted oxygen self-sufficient photodynamic cancer therapy. Nano Today, 2022, 44, 101477.	11.9	24
47	3D-Printed, Portable, Fluorescent-Sensing Platform for Smartphone-Capable Detection of Organophosphorus Residue Using Reaction-Based Aggregation Induced Emission Luminogens. ACS Sensors, 2021, 6, 2845-2850.	7.8	23
48	Albumin-Consolidated AlEgens for Boosting Glioma and Cerebrovascular NIR-II Fluorescence Imaging. ACS Applied Materials & Interfaces, 2023, 15, 3-13.	8.0	23
49	Monitorable Mitochondria-Targeting DNAtrain for Image-Guided Synergistic Cancer Therapy. Analytical Chemistry, 2019, 91, 6996-7000.	6.5	21
50	Ratiometric imaging of butyrylcholinesterase activity in mice with nonalcoholic fatty liver using an AIE-based fluorescent probe. Journal of Materials Chemistry B, 2022, 10, 4254-4260.	5.8	20
51	A responsive AIE-active fluorescent probe for visualization of acetylcholinesterase activity <i>in vitro</i> and <i>in vivo</i> . Materials Chemistry Frontiers, 2022, 6, 1515-1521.	5.9	19
52	Iron oxide nanoparticles protected by NIR-active multidentate-polymers as multifunctional nanoprobes for NIRF/PA/MR trimodal imaging. Nanoscale, 2016, 8, 775-779.	5.6	18
53	Development of Reaction-Based AIE Handy Pen for Visual Detection of Toxic Vapors., 2021, 3, 249-254.		18
54	Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: a novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging. Nanoscale, 2018, 10, 19742-19748.	5.6	17

#	Article	IF	CITATIONS
55	Mitochondria-targeting NIR fluorescent probe for rapid, highly sensitive and selective visualization of nitroxyl in live cells, tissues and mice. Science China Chemistry, 2020, 63, 282-289.	8.2	16
56	Fluorescence Selfâ€Reporting Precipitation Polymerization Based on Aggregationâ€Induced Emission for Constructing Optical Nanoagents. Angewandte Chemie, 2020, 132, 10208-10214.	2.0	15
57	An easily available ratiometric AIE probe for nitroxyl visualization <i>in vitro</i> and <i>in vivo</i> Materials Chemistry Frontiers, 2021, 5, 1817-1823.	5.9	15
58	Halobenzoquinone-mediated assembly of amino acid modified Mn-doped ZnS quantum dots for halobenzoquinones detection in drinking water. Analytica Chimica Acta, 2018, 1026, 147-154.	5.4	14
59	Mitochondria-Localized Self-Reporting Small-Molecule-Decorated Theranostic Agents for Cancer-Organelle Transporting and Imaging. ACS Applied Bio Materials, 2019, 2, 5164-5173.	4.6	13
60	Bioâ€orthogonal AIE Dots Based on Polyyneâ€Bridged Redâ€emissive AIEgen for Tumor Metabolic Labeling and Targeted Imaging. Chemistry - an Asian Journal, 2019, 14, 770-774.	3.3	13
61	Ratiometric Photoacoustic Chemical Sensor for Pd ²⁺ Ion. Analytical Chemistry, 2020, 92, 4721-4725.	6.5	13
62	Recombinant-fully-human-antibody decorated highly-stable far-red AIEdots for <i>in vivo</i> HER-2 receptor-targeted imaging. Chemical Communications, 2018, 54, 7314-7317.	4.1	12
63	Boosting the AlEgen-based photo-theranostic platform by balancing radiative decay and non-radiative decay. Materials Chemistry Frontiers, 0, , .	5.9	11
64	Aggregation-Induced Emission Luminogen Catalyzed Photocontrolled Reversible Addition–Fragmentation Chain Transfer Polymerization in an Aqueous Environment. Macromolecules, 2022, 55, 2904-2910.	4.8	10
65	On-site visual discrimination of transgenic food by water-soluble DNA-binding AlEgens. Materials Chemistry Frontiers, 2019, 3, 2647-2651.	5.9	9
66	Spatiotemporal Control of Molecular Cascade Reactions by a Reconfigurable DNA Origami Domino Array. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
67	An easily available lysosomal-targeted ratiometric fluorescent probe with aggregation induced emission characteristics for hydrogen polysulfide visualization in acute ulcerative colitis. Materials Chemistry Frontiers, 2021, 5, 7638-7644.	5.9	7
68	A glutathione-activated carrier-free nanodrug of triptolide as a trackable drug delivery system for monitoring and improving tumor therapy. Materials Chemistry Frontiers, 2021, 5, 5312-5318.	5.9	6
69	Ultrasmall paramagnetic near infrared quantum dots as dual modal nanoprobes. RSC Advances, 2013, 3, 21247.	3.6	5
70	Planar AlEgens with Enhanced Solidâ€State Luminescence and ROS Generation for Multidrugâ€Resistant Bacteria Treatment. Angewandte Chemie, 2020, 132, 10265-10271.	2.0	5
71	Organic Nanocrystals Based on a Solid-emission-tunable AlEgen for Cell Imaging. Chemical Research in Chinese Universities, 2021, 37, 129-136.	2.6	5
72	An α-naphtholphthalein-derived colorimetric fluorescent chemoprobe for the portable and visualized monitoring of Hg ²⁺ by the hydrolysis mechanism. New Journal of Chemistry, 2022, 46, 11695-11705.	2.8	5

#	Article	IF	CITATIONS
73	Effects of Dietary Protein and Lipid Levels on Growth Performance, Muscle Composition, Immunity Index and Biochemical Index of the Greenfin Horse-Faced Filefish (Thamnaconus septentrionalis) Juvenile. Journal of Ocean University of China, 2021, 20, 1245-1252.	1.2	4
74	CRISPR/Cas12a-Assisted Visual Logic-Gate Detection of Pathogenic Microorganisms Based on Water-Soluble DNA-Binding AlEgens. Frontiers in Chemistry, 2021, 9, 801972.	3.6	4
75	Neurotoxin-directed synthesis and in vitro evaluation of Au nanoclusters. RSC Advances, 2015, 5, 29647-29652.	3.6	1
76	Enhancement of Plasmonâ€Induced Photoelectrocatalytic Water Oxidation over Au/TiO ₂ with Lithium Intercalation. Angewandte Chemie, 2022, 134, .	2.0	1