
Mirela Petruta Suchea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7367267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Investigations in Electrochromic Vanadium Pentoxide Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100431.	1.8	7
2	New La3+ doped TiO2 nanofibers for photocatalytic degradation of organic pollutants: Effects of thermal treatment and doping loadings. Ceramics International, 2022, 48, 4953-4964.	4.8	29
3	Cu/TiO2 composite nanofibers with improved photocatalytic performance under UV and UV–visible light irradiation. Surfaces and Interfaces, 2022, 28, 101644.	3.0	14
4	Nanoparticle/biopolymer-based coatings for functionalization of textiles: recent developments (a) Tj ETQq0 0	0 rgBT /Ove 2.2	rlock 10 Tf 50
5	Novel Water-Based Paints for Composite Materials Used in Electromagnetic Shielding Applications. Nanomaterials, 2022, 12, 487.	4.1	10
6	3D Printed Metal Oxide-Polymer Composite Materials for Antifouling Applications. Nanomaterials, 2022, 12, 917.	4.1	3
7	WO3 Films Grown by Spray Pyrolysis for Smart Windows Applications. Coatings, 2022, 12, 545.	2.6	6
8	Early Notice Pointer, an IoT-like Platform for Point-of-Care Feet and Body Balance Screening. Micromachines, 2022, 13, 682.	2.9	2
9	Electromagnetic Shielding of Composite Films Based on Graphite, Graphitized Carbon Black and Iron-Oxide. Coatings, 2022, 12, 665.	2.6	7
10	Carbon Allotropes-Based Paints and Their Composite Coatings for Electromagnetic Shielding Applications. Nanomaterials, 2022, 12, 1839.	4.1	6
11	Comparative Study of Graphene Nanoplatelets and Multiwall Carbon Nanotubes-Polypropylene Composite Materials for Electromagnetic Shielding. Nanomaterials, 2022, 12, 2411.	4.1	8
12	Photocatalytic Properties of Eco-Friendly ZnO Nanostructures on 3D-Printed Polylactic Acid Scaffolds. Nanomaterials, 2021, 11, 168.	4.1	11
13	Thickness Effect on Some Physical Properties of RF Sputtered ZnTe Thin Films for Potential Photovoltaic Applications. Nanomaterials, 2021, 11, 2286.	4.1	10
14	Obtaining Nanostructured ZnO onto Si Coatings for Optoelectronic Applications via Eco-Friendly Chemical Preparation Routes. Nanomaterials, 2021, 11, 2490.	4.1	3
15	Innovative Ag–TiO2 Nanofibers with Excellent Photocatalytic and Antibacterial Actions. Catalysts, 2021, 11, 1234.	3.5	18
16	Integration of Micro-Structured Photovoltaic Cells into the Ultra-Light Wing Structure for Extended Range Unmanned Aerial Vehicles. Applied Sciences (Switzerland), 2021, 11, 10890.	2.5	0
17	Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties. Arabian Journal of Chemistry, 2020, 13, 3521-3533.	4.9	56
18	Spinel nanoparticles on stick-like Freudenbergite nanocomposites as effective smart-removal photocatalysts for the degradation of organic pollutants under visible light. Journal of Alloys and Compounds, 2020, 820, 153403.	5.5	14

MIRELA PETRUTA SUCHEA

#	Article	IF	CITATIONS
19	Annealing Effect on the Properties of Electrochromic V2O5 Thin Films Grown by Spray Deposition Technique. Nanomaterials, 2020, 10, 2397.	4.1	12
20	SnO2 and Ni doped SnO2 /polythiophene nanocomposites for gas sensing applications. Solid State Electronics Letters, 2020, 2, 85-91.	1.0	13
21	The Mechanical and Physical Properties of 3D-Printed Materials Composed of ABS-ZnO Nanocomposites and ABS-ZnO Microcomposites. Micromachines, 2020, 11, 615.	2.9	46
22	Electrochromic Performance of V2O5 Thin Films Grown by Spray Pyrolysis. Materials, 2020, 13, 3859.	2.9	17
23	Effect of Graphene Nanoplatelets on the Structure, the Morphology, and the Dielectric Behavior of Low-Density Polyethylene Nanocomposites. Materials, 2020, 13, 4776.	2.9	13
24	3D Printed Fully Recycled TiO2-Polystyrene Nanocomposite Photocatalysts for Use against Drug Residues. Nanomaterials, 2020, 10, 2144.	4.1	23
25	Carbon-based nanocomposites for EMI shielding: Recent advances. , 2020, , 201-211.		7
26	Photocatalytic and antimicrobial activity of electrospun ZnO:Ag nanostructures. Journal of Alloys and Compounds, 2020, 834, 155144.	5.5	33
27	Tuning electrical properties of polythiophene/nickel nanocomposites via fabrication. Materials and Design, 2019, 182, 108027.	7.0	12
28	Graphene-based materials and their biomedical and environmental applications: Recent advances. , 2019, , 243-257.		1
29	Multifunctional nanostructured interfaces: Origin and challenges for biomedical and environmental applications. , 2019, , 1-14.		0
30	Chemical and physical methods for multifunctional nanostructured interface fabrication. , 2019, , 15-26.		12
31	Nanostructured ZnO-based materials for biomedical and environmental applications. , 2019, , 285-305.		1
32	Electrospun TiO2-based nanofiber composites and their bio-related and environmental applications. , 2019, , 307-321.		4
33	TiO2-based nanostructured materials with germicidal properties and other applications in biomedical fields. , 2019, , 323-339.		3
34	Applications of metallic nanostructures in biomedical field. , 2019, , 341-361.		2
35	Antibacterial efficiency of cellulose-based fibers covered with ZnO and Al2O3 by Atomic Layer Deposition. Applied Surface Science, 2019, 481, 1287-1298.	6.1	36
36	Direct writing of Prussian blue patterns down to micrometer scale: preliminary tests results. , 2019, , .		0

#	Article	IF	CITATIONS
37	Effect of Zinc Oxide concentration on the dielectric properties of 3D Printed Acrylonitrile Butadiene Styrene nanocomposites. , 2019, , .		3
38	Preparation of La doped ZnO ceramic nanostructures by electrospinning–calcination method: Effect of La3+ doping on optical and photocatalytic properties. Applied Surface Science, 2019, 476, 16-27.	6.1	110
39	Surface Morphology Effects on Photocatalytic Activity of Metal Oxides Nanostructured Materials Immobilized onto Substrates. Journal of Nanoscience and Nanotechnology, 2019, 19, 295-306.	0.9	13
40	Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Applied Surface Science, 2018, 448, 481-488.	6.1	130
41	Zinc oxide-graphene based composite layers for electromagnetic interference shielding in the GHz frequency range. Thin Solid Films, 2018, 651, 152-157.	1.8	17
42	Correlation between Surface Engineering and Deformation Response of Some Natural Polymer Fibrous Systems. Journal of Engineered Fibers and Fabrics, 2018, 13, 155892501801300.	1.0	4
43	Methods for Art Preservation and Restauration. Identification of Parameters for Potential Monitoring the Temporal Evolution of Putties. , 2018, , .		Ο
44	Graphene and TiO <inf>2</inf> - PVDF Nanocomposites for Potential Applications in Triboelectronics. , 2018, , .		6
45	Comparative Study of Sm and La Doped ZnO Properties. , 2018, , .		Ο
46	A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers. Applied Surface Science, 2017, 398, 15-18.	6.1	49
47	Electrochemical Deposition of Zinc Oxide on the Surface of Composite Membrane Polysulfone-Graphene-Polystyrene in the Presence of Water Soluble Polymers. Journal of Nanomaterials, 2017, 2017, 1-11.	2.7	7
48	Atmospheric Pressure Chemical Vapor Deposition of Vanadium Oxides at 300 °C for Li-Ion Batteries. Materials Focus, 2017, 6, 314-318.	0.4	0
49	ZnO for photocatalytic air purification applications. IOP Conference Series: Materials Science and Engineering, 2016, 133, 012040.	0.6	10
50	Atmospheric Pressure Chemical Vapor Deposition Of Amorphous Tungsten Doped Vanadium Dioxide ForÂsmart Window Applications Â. Advanced Materials Letters, 2016, 7, 192-196.	0.6	19
51	Nanostructured composite layers for electromagnetic shielding in the GHz frequency range. Applied Surface Science, 2015, 352, 151-154.	6.1	14
52	Evaluation of Adsorption Capacity of Montmorillonite and Aluminium-pillared Clay for Pb2+, Cu2+ and Zn2+. Acta Chimica Slovenica, 2015, 62, 947-957.	0.6	4
53	Zinc oxide application in the textile industry: surface tailoring and water barrier attributes as parameters with direct implication in comfort performance. Textile Reseach Journal, 2013, 83, 2142-2151.	2.2	20
54	Precursor concentration effect on structure and morphology of ZnO for coatings on fabric substrates. Acta Chemica lasi, 2013, 21, 107-118.	0.1	4

MIRELA PETRUTA SUCHEA

#	Article	IF	CITATIONS
55	Comparative study on field collected samples of aged silicon rubber composite coatings for high voltage insulators. Acta Chemica Iasi, 2013, 21, 93-106.	0.1	1
56	Zinc oxide films chemically grown onto rigid and flexible substrates for TFT applications. Physica B: Condensed Matter, 2010, 405, 4389-4392.	2.7	3
57	Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films. Thin Solid Films, 2009, 517, 4303-4306.	1.8	53
58	The effect of Au and Pt nanoclusters on the structural and hydrogen sensing properties of SnO2 thin films. Thin Solid Films, 2009, 518, 1109-1113.	1.8	35
59	Nano-structural and surface characteristics of non-stoichiometric In _{2O_{3−x thin films. International Journal of Nanotechnology, 2009, 6, 208.}}	0.2	1
60	The Effect Of Au Nanoclusters In Tin OxIDe Film Gas Sensors. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 219-222.	0.3	0
61	CaS:Eu,Sm and CaS:Ce,Sm films grown by embedding active powder into an inert matrix. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 130-134.	3.5	12
62	Structural and morphological properties of thin ZnO films grown by pulsed laser deposition. Applied Surface Science, 2008, 254, 5475-5480.	6.1	17
63	Surface characteristics and tribology study of metal oxide thin films. Tribology - Materials, Surfaces and Interfaces, 2008, 2, 225-231.	1.4	0
64	ZnO Thin Films for Cantilever Coatings: Structural and Mechanical Properties, Observations of Photoplastic Effect. Sensor Letters, 2008, 6, 558-563.	0.4	2
65	Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films, 2007, 515, 6562-6566.	1.8	179
66	Structural characterization of ZnO thin films deposited by dc magnetron sputtering. Thin Solid Films, 2007, 515, 8577-8581.	1.8	36
67	Europium and samarium doped calcium sulfide thin films grown by PLD. Applied Surface Science, 2007, 253, 8169-8173.	6.1	13
68	Substrate temperature influence on the properties of nanostructured ZnO transparent ultrathin films grown by PLD. Applied Surface Science, 2007, 253, 8141-8145.	6.1	26
69	Pure and Nb2O5-doped TiO2 amorphous thin films grown by dc magnetron sputtering at room temperature: Surface and photo-induced hydrophilic conversion studies. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 144, 54-59.	3.5	13
70	Correlation of ZnO thin film surface properties with conductivity. Applied Physics A: Materials Science and Processing, 2007, 89, 57-61.	2.3	44
71	Metal oxide thin films as sensing layers for ozone detection. Analytica Chimica Acta, 2006, 573-574, 9-13.	5.4	7
72	Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent thin films grown by PLD. Applied Surface Science, 2006, 252, 5351-5354.	6.1	65

MIRELA PETRUTA SUCHEA

#	Article	IF	CITATIONS
73	Low temperature indium oxide gas sensors. Sensors and Actuators B: Chemical, 2006, 118, 135-141.	7.8	80
74	ZnO transparent thin films for gas sensor applications. Thin Solid Films, 2006, 515, 551-554.	1.8	290
75	Sensing using nanostructured metal oxide thin films. , 2006, , .		1
76	Highly sensitive layered ZnO/LiNbO3 SAW device with InOx selective layer for NO2 and H2 gas sensing. Sensors and Actuators B: Chemical, 2005, 111-112, 207-212.	7.8	57
77	Surface characterization of ZnO transparent thin films. Journal of Physics: Conference Series, 2005, 10, 147-150.	0.4	17
78	Ultra sensitive low temperature metal oxide gas sensors. , 0, , .		2
79	Surface characteristics of In and Zn oxides by atomic force microscopy. , 0, , .		1