
Courtney M Karner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7366116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioenergetic Metabolism In Osteoblast Differentiation. Current Osteoporosis Reports, 2022, 20, 53-64.	1.5	21
2	Hypertrophic chondrocytes serve as a reservoir for marrow-associated skeletal stem and progenitor cells, osteoblasts, and adipocytes during skeletal development. ELife, 2022, 11, .	2.8	28
3	SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. ELife, 2022, 11, .	2.8	21
4	Evaluation of Amino Acid Consumption in Cultured Bone Cells and Isolated Bone Shafts. Journal of Visualized Experiments, 2022, , .	0.2	0
5	Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation. Journal of Cell Science, 2021, 134, .	1.2	36
6	Obesity alters the collagen organization and mechanical properties of murine cartilage. Scientific Reports, 2021, 11, 1626.	1.6	9
7	Morphological and genomic shifts in mole-rat â€~queens' increase fecundity but reduce skeletal integrity. ELife, 2021, 10, .	2.8	8
8	Hypoxia depletes contaminating CD45+ hematopoietic cells from murine bone marrow stromal cell (BMSC) cultures: Methods for BMSC culture purification. Stem Cell Research, 2021, 53, 102317.	0.3	5
9	An adhesion G protein-coupled receptor is required in cartilaginous and dense connective tissues to maintain spine alignment. ELife, 2021, 10, .	2.8	15
10	SLC1A5 provides glutamine and asparagine necessary for bone development in mice. ELife, 2021, 10, .	2.8	26
11	Whole Mount In Situ Hybridization in Murine Tissues. Methods in Molecular Biology, 2021, 2230, 367-376.	0.4	Ο
12	Radiolabeled Amino Acid Uptake Assays in Primary Bone Cells and Bone Explants. Methods in Molecular Biology, 2021, 2230, 449-456.	0.4	3
13	HES1 is a novel downstream modifier of the SHH-GLI3 Axis in the development of preaxial polydactyly. PLoS Genetics, 2021, 17, e1009982.	1.5	5
14	The Amino Acid Sensor <scp><i>Eif2ak4</i>/GCN2</scp> Is Required for Proliferation of Osteoblast Progenitors in Mice. Journal of Bone and Mineral Research, 2020, 35, 2004-2014.	3.1	21
15	Distinct Roles of Glutamine Metabolism in Benign and Malignant Cartilage Tumors With IDH Mutations. Journal of Bone and Mineral Research, 2020, 37, 983-996.	3.1	4
16	Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity. Science Advances, 2019, 5, eaax8352.	4.7	66
17	Molecular determinants of WNT9b responsiveness in nephron progenitor cells. PLoS ONE, 2019, 14, e0215139.	1.1	15
18	Glutamine Metabolism Regulates Proliferation and Lineage Allocation in Skeletal Stem Cells. Cell Metabolism, 2019, 29, 966-978.e4.	7.2	170

COURTNEY M KARNER

#	Article	IF	CITATIONS
19	Glucose metabolism in bone. Bone, 2018, 115, 2-7.	1.4	104
20	Bmp Induces Osteoblast Differentiation through both Smad4 and mTORC1 Signaling. Molecular and Cellular Biology, 2017, 37, .	1.1	80
21	Myc cooperates with beta-catenin to drive gene expression in the nephron progenitor cells. Development (Cambridge), 2017, 144, 4173-4182.	1.2	24
22	Wnt signaling and cellular metabolism in osteoblasts. Cellular and Molecular Life Sciences, 2017, 74, 1649-1657.	2.4	212
23	Wnt Protein Signaling Reduces Nuclear Acetyl-CoA Levels to Suppress Gene Expression during Osteoblast Differentiation. Journal of Biological Chemistry, 2016, 291, 13028-13039.	1.6	43
24	Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4678-4683.	3.3	78
25	Dual function of Bmpr1a signaling in restricting preosteoblast proliferation and stimulating osteoblast activity in the mouse. Development (Cambridge), 2015, 143, 339-47.	1.2	52
26	<i>Gpr126/Adgrg6</i> deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. Human Molecular Genetics, 2015, 24, 4365-4373.	1.4	82
27	Wnt4 is essential to normal mammalian lung development. Developmental Biology, 2015, 406, 222-234.	0.9	58
28	Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. Journal of Clinical Investigation, 2015, 125, 551-562.	3.9	126
29	WNT-LRP5 Signaling Induces Warburg Effect through mTORC2 Activation during Osteoblast Differentiation. Cell Metabolism, 2013, 17, 745-755.	7.2	294
30	Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development (Cambridge), 2011, 138, 1247-1257.	1.2	254
31	Tankyrase is necessary for canonical Wnt signaling during kidney development. Developmental Dynamics, 2010, 239, 2014-2023.	0.8	38
32	Lrp4 Regulates Initiation of Ureteric Budding and Is Crucial for Kidney Formation – A Mouse Model for Cenani-Lenz Syndrome. PLoS ONE, 2010, 5, e10418.	1.1	54
33	Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nature Genetics, 2009, 41, 793-799.	9.4	313