Maria Ciemerych-Litwinienko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7366097/publications.pdf

Version: 2024-02-01

76 papers 3,365 citations

236925 25 h-index 57 g-index

77 all docs

77 docs citations

77 times ranked

4750 citing authors

#	Article	IF	Citations
1	Mouse Development and Cell Proliferation in the Absence of D-Cyclins. Cell, 2004, 118, 477-491.	28.9	590
2	A Genome-Wide Study of Gene Activity Reveals Developmental Signaling Pathways in the Preimplantation Mouse Embryo. Developmental Cell, 2004, 6, 133-144.	7.0	481
3	Cyclins D2 and D1 Are Essential for Postnatal Pancreatic \hat{I}^2 -Cell Growth. Molecular and Cellular Biology, 2005, 25, 3752-3762.	2.3	317
4	Development of mice expressing a single D-type cyclin. Genes and Development, 2002, 16, 3277-3289.	5.9	233
5	The critical role of cyclin D2 in adult neurogenesis. Journal of Cell Biology, 2004, 167, 209-213.	5.2	170
6	Cell cycle in mouse development. Oncogene, 2005, 24, 2877-2898.	5.9	137
7	The role of TGFâ€Î²1 during skeletal muscle regeneration. Cell Biology International, 2017, 41, 706-715.	3.0	135
8	Sdfâ \in 1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biology of the Cell, 2012, 104, 722-737.	2.0	77
9	Ras and Myc can drive oncogenic cell proliferation through individual D-cyclins. Oncogene, 2005, 24, 7114-7119.	5.9	69
10	On the transition from the meiotic to mitotic cell cycle during early mouse development. International Journal of Developmental Biology, 2008, 52, 201-217.	0.6	58
11	Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis. Cell Adhesion and Migration, 2017, 11, 384-398.	2.7	50
12	Early Development of Mouse Embryos Null Mutant for the Cyclin A2 Gene Occurs in the Absence of Maternally Derived Cyclin A2 Gene Products. Developmental Biology, 2000, 223, 139-153.	2.0	49
13	Human and mouse skeletal muscle stem and progenitor cells in health and disease. Seminars in Cell and Developmental Biology, 2020, 104, 93-104.	5.0	48
14	The E4F Protein Is Required for Mitotic Progression during Embryonic Cell Cycles. Molecular and Cellular Biology, 2004, 24, 6467-6475.	2.3	46
15	The First Mitosis of the Mouse Embryo Is Prolonged by Transitional Metaphase Arrest1. Biology of Reproduction, 2006, 74, 734-743.	2.7	39
16	Mouse gastrocnemius muscle regeneration after mechanical or cardiotoxin injury. Folia Histochemica Et Cytobiologica, 2012, 50, 144-153.	1.5	38
17	Control of duration of the first two mitoses in a mouse embryo. Zygote, 1999, 7, 293-300.	1.1	37
18	Cytostatic Activity Develops during Meiosis I in Oocytes of LT/Sv Mice. Developmental Biology, 1998, 200, 198-211.	2.0	34

#	Article	IF	Citations
19	Regulation of Muscle Stem Cells Activation. Vitamins and Hormones, 2011, 87, 239-276.	1.7	34
20	Adhesion Proteins - An Impact on Skeletal Myoblast Differentiation. PLoS ONE, 2013, 8, e61760.	2.5	32
21	Inflammatory response during slow- and fast-twitch muscle regeneration. Muscle and Nerve, 2017, 55, 400-409.	2.2	31
22	Decrease of MMP-9 Activity Improves Soleus Muscle Regeneration. Tissue Engineering - Part A, 2012, 18, 1183-1192.	3.1	30
23	Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration. Stem Cell Research and Therapy, 2015, 6, 46.	5. 5	30
24	Cell Cycle Regulation During Proliferation and Differentiation of Mammalian Muscle Precursor Cells. Results and Problems in Cell Differentiation, 2011, 53, 473-527.	0.7	30
25	Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnology Letters, 2013, 35, 1387-1394.	2.2	27
26	Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Research and Therapy, 2021, 12, 448.	5.5	25
27	Cell Therapy in Duchenne Muscular Dystrophy Treatment: Clinical Trials Overview. Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 1-11.	0.9	23
28	Stromal derived factorâ€1 and granulocyteâ€colony stimulating factor treatment improves regeneration of <i>Pax7</i> â°'/â°' mice skeletal muscles. Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 483-496.	7.3	23
29	Restricted Myogenic Potential of Mesenchymal Stromal Cells Isolated from Umbilical Cord. Cell Transplantation, 2012, 21, 1711-1726.	2.5	21
30	Induction of bone marrow-derived cells myogenic identity by theirÂinteractions with the satellite cell niche. Stem Cell Research and Therapy, 2018, 9, 258.	5.5	21
31	From pluripotency to myogenesis: a multistep process in the dish. Journal of Muscle Research and Cell Motility, 2015, 36, 363-375.	2.0	20
32	Differential chromatin condensation of female and male pronuclei in mouse zygotes. Molecular Reproduction and Development, 1993, 34, 73-80.	2.0	17
33	Chromatin condensation activity and cortical activity during the first three cell cycles of a mouse embryo. Molecular Reproduction and Development, 1995, 41, 416-424.	2.0	17
34	Fertilization differently affects the levels of cyclin B1 and M-phase promoting factor activity in maturing and metaphase II mouse oocytes. Reproduction, 2008, 136, 741-752.	2.6	17
35	Cell Cycle Regulation in Early Mouse Embryos. Novartis Foundation Symposium, 2008, 237, 79-92.	1.1	17
36	The Survey of Cells Responsible for Heterotopic Ossification Development in Skeletal Muscles—Human and Mouse Models. Cells, 2020, 9, 1324.	4.1	17

#	Article	IF	CITATIONS
37	Metaphase I Arrest in LT/Sv Mouse Oocytes Involves the Spindle Assembly Checkpoint1. Biology of Reproduction, 2008, 79, 1102-1110.	2.7	16
38	Temporal regulation of embryonic M-phases Folia Histochemica Et Cytobiologica, 2008, 46, 5-9.	1.5	16
39	Autonomous activation of histone H1 kinase, cortical activity and microtubule organization in one-and two-cell mouse embryos. Biology of the Cell, 1998, 90, 557-564.	2.0	15
40	Nuclear MMPâ€9 role in the regulation of rat skeletal myoblasts proliferation. Biology of the Cell, 2013, 105, 334-344.	2.0	14
41	Myogenic Potential of Mesenchymal Stem Cells - the Case of Adhesive Fraction of Human Umbilical Cord Blood Cells. Current Stem Cell Research and Therapy, 2013, 8, 82-90.	1.3	14
42	IL-4 and SDF-1 Increase Adipose Tissue-Derived Stromal Cell Ability to Improve Rat Skeletal Muscle Regeneration. International Journal of Molecular Sciences, 2020, 21, 3302.	4.1	14
43	Spindle assembly checkpoint-related failure perturbs early embryonic divisions and reduces reproductive performance of LT/Sv mice. Reproduction, 2009, 137, 931-942.	2.6	13
44	The factors present in regenerating muscles impact bone marrow-derived mesenchymal stromal/stem cell fusion with myoblasts. Stem Cell Research and Therapy, 2019, 10, 343.	5.5	13
45	Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7. Cell Cycle, 2016, 15, 2931-2942.	2.6	12
46	Transient MicroRNA Expression Enhances Myogenic Potential of Mouse Embryonic Stem Cells. Stem Cells, 2018, 36, 655-670.	3.2	12
47	Beneficial Effect of IL-4 and SDF-1 on Myogenic Potential of Mouse and Human Adipose Tissue-Derived Stromal Cells. Cells, 2020, 9, 1479.	4.1	12
48	Factors Regulating Pluripotency and Differentiation in Early Mammalian Embryos and Embryo-derived Stem Cells. Vitamins and Hormones, 2011, 87, 1-37.	1.7	11
49	Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene. Stem Cells and Development, 2016, 25, 285-300.	2.1	11
50	Transient reactivation of CSF in parthenogenetic one ell mouse embryos. Biology of the Cell, 1999, 91, 641-647.	2.0	10
51	Adipose Tissue-Derived Stromal Cells in Matrigel Impact the Regeneration of Severely Damaged Skeletal Muscles. International Journal of Molecular Sciences, 2019, 20, 3313.	4.1	10
52	Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas. Stem Cell Research and Therapy, 2020, 11, 238.	5.5	10
53	Competence of In Vitro Cultured Mouse Embryonic Stem Cells for Myogenic Differentiation and Fusion with Myoblasts. Stem Cells and Development, 2014, 23, 2455-2468.	2.1	9
54	Myogenic potential of mouse embryonic stem cells lacking functional Pax7 tested in vitro by 5-azacitidine treatment and in vivo in regenerating skeletal muscle. European Journal of Cell Biology, 2017, 96, 47-60.	3.6	9

#	Article	IF	CITATIONS
55	Mouse CD146+ muscle interstitial progenitor cells differ from satellite cells and present myogenic potential. Stem Cell Research and Therapy, 2020, 11, 341.	5.5	9
56	CDK4 activity in mouse embryos expressing a single D-type cyclin. International Journal of Developmental Biology, 2008, 52, 299-305.	0.6	9
57	Non-Coding RNAs as Regulators of Myogenesis and Postexercise Muscle Regeneration. International Journal of Molecular Sciences, 2021, 22, 11568.	4.1	9
58	Temporal regulation of the first mitosis in Xenopus and mouse embryos. Molecular and Cellular Endocrinology, 2008, 282, 63-69.	3.2	8
59	Progression of inflammation during immunodeficient mouse skeletal muscle regeneration. Journal of Muscle Research and Cell Motility, 2015, 36, 395-404.	2.0	8
60	Defective calcium release during in vitro fertilization of maturing oocytes of LT/Sv mice. International Journal of Developmental Biology, 2008, 52, 903-912.	0.6	7
61	Silencing of gelatinase expression delays myoblast differentiation in vitro. Cell Biology International, 2018, 42, 373-382.	3.0	7
62	Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells and Development, 2019, 28, 1059-1077.	2.1	7
63	Mammalian and avian embryology at Warsaw University (Poland) from XIX century to the present. International Journal of Developmental Biology, 2008, 52, 121-134.	0.6	6
64	Transcription and DNA replication of sperm nuclei introduced into blastomeres of 2-cell mouse embryos. Zygote, 1997, 5, 289-299.	1.1	5
65	Polydimethylsiloxane materials with supraphysiological elasticity enable differentiation of myogenic cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 2619-2628.	4.0	4
66	Pluripotency of bank vole embryonic cells depends on FGF2 and activin A signaling pathways. International Journal of Developmental Biology, 2010, 54, 113-124.	0.6	4
67	Interleukin 4 Moderately Affects Competence of Pluripotent Stem Cells for Myogenic Conversion. International Journal of Molecular Sciences, 2019, 20, 3932.	4.1	3
68	Phosphorylated ERK5/BMK1 transiently accumulates within division spindles in mouse oocytes and preimplantation embryos. Folia Histochemica Et Cytobiologica, 2011, 49, 528-534.	1.5	3
69	Pluripotent and Mesenchymal Stem Cellsâ€"Challenging Sources for Derivation of Myoblast. , 2018, , 109-154.		2
70	The role of CXC receptors signaling in early stages of mouse embryonic stem cell differentiation. Stem Cell Research, 2019, 41, 101636.	0.7	2
71	Novel insights and innovations in biotechnology towards improved quality of life. New Biotechnology, 2019, 49, 58-65.	4.4	2
72	Autonomous activation of histone H1 kinase, cortical activity and microtubule organization in one-and two-cell mouse embryos. Biology of the Cell, 1998, 90, 557-564.	2.0	2

#	Article	IF	CITATIONS
73	Comparison of Differentiation Pattern and WNT/SHH Signaling in Pluripotent Stem Cells Cultured under Different Conditions. Cells, 2021, 10, 2743.	4.1	2
74	The miR151 and miR5100 Transfected Bone Marrow Stromal Cells Increase Myoblast Fusion in IGFBP2 Dependent Manner. Stem Cell Reviews and Reports, 2022, , 1.	3.8	2
75	Mammalian Development and Cancer: A Brief History of Mice Lacking D-Type Cyclins or CDK4/CDK6. Current Cancer Research, 2018, , 27-59.	0.2	1
76	PAX7 Balances the Cell Cycle Progression via Regulating Expression of Dnmt3b and Apobec2 in Differentiating PSCs. Cells, 2021, 10, 2205.	4.1	1