Xibo Pei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365819/publications.pdf

Version: 2024-02-01

		304743	377865
34	1,730 citations	22	34
papers	citations	h-index	g-index
2.5	0.5		0010
35	35	35	2012
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Delivery of therapeutic miRNAs using nanoscale zeolitic imidazolate framework for accelerating vascularized bone regeneration. Chemical Engineering Journal, 2022, 430, 132867.	12.7	23
2	Nano SIM@ZIF-8 modified injectable High-intensity biohydrogel with bidirectional regulation of osteogenesis and Anti-adipogenesis for bone repair. Chemical Engineering Journal, 2022, 434, 134583.	12.7	16
3	The synthesis of nano bio-MOF-1 with a systematic evaluation on the biosafety and biocompatibility. Microporous and Mesoporous Materials, 2022, 334, 111773.	4.4	13
4	pHâ€Triggered Sizeâ€Tunable Silver Nanoparticles: Targeted Aggregation for Effective Bacterial Infection Therapy. Small, 2022, 18, e2200915.	10.0	43
5	Nanoscale Zeolitic Imidazolate Framework-8 Activator of Canonical MAPK Signaling for Bone Repair. ACS Applied Materials & Diterfaces, 2021, 13, 97-111.	8.0	64
6	Nanomaterial-based ROS-mediated strategies for combating bacteria and biofilms. Journal of Materials Research, 2021, 36, 822-845.	2.6	13
7	A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nature Communications, 2021, 12, 1689.	12.8	114
8	Comparative analyses of the soft tissue interfaces around teeth and implants: Insights from a preâ€clinical implant model. Journal of Clinical Periodontology, 2021, 48, 745-753.	4.9	11
9	Tantalum and its derivatives in orthopedic and dental implants: Osteogenesis and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112055.	5.0	58
10	Accelerated Bone Regeneration by MOF Modified Multifunctional Membranes through Enhancement of Osteogenic and Angiogenic Performance. Advanced Healthcare Materials, 2021, 10, e2001369.	7.6	67
11	Metal-organic framework-based nanomaterials for biomedical applications. Chinese Chemical Letters, 2020, 31, 1060-1070.	9.0	88
12	3D printing of metal–organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale, 2020, 12, 24437-24449.	5.6	72
13	ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36978-36995.	8.0	126
14	PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Scientific Reports, 2020, 10, 2717.	3.3	132
15	Micro or nano: Evaluation of biosafety and biopotency of magnesium metal organic framework-74 with different particle sizes. Nano Research, 2020, 13, 511-526.	10.4	45
16	Zeolitic Imidazolate Framework-8 Encapsulating Risedronate Synergistically Enhances Osteogenic and Antiresorptive Properties for Bone Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 2186-2197.	5.2	18
17	The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 635-645.	3.4	56
18	Internal adaptation of cobalt-chromium posts fabricated by selective laser melting technology. Journal of Prosthetic Dentistry, 2019, 121, 455-460.	2.8	10

#	Article	IF	CITATIONS
19	Tazarotene Released from Aligned Electrospun Membrane Facilitates Cutaneous Wound Healing by Promoting Angiogenesis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36141-36153.	8.0	61
20	Dimethyloxalylglycine improves angiogenesis of ZIF-8-coated implant. Journal of Biomaterials Applications, 2019, 34, 396-407.	2.4	14
21	Network meta-analysis of survival rate and complications in implant-supported single crowns with different abutment materials. Journal of Dentistry, 2019, 88, 103115.	4.1	21
22	Effect of dentin surface modification using carbon nanotubes on dental bonding and antibacterial ability. Dental Materials Journal, 2018, 37, 229-236.	1.8	10
23	A Systematic Review of the Survival and Complication Rates of Allâ€Ceramic Resinâ€Bonded Fixed Dental Prostheses. Journal of Prosthodontics, 2018, 27, 535-543.	3.7	34
24	Preparation and Characterization of Chitosan/ \hat{l}^2 -Glycerophosphate Thermal-Sensitive Hydrogel Reinforced by Graphene Oxide. Frontiers in Chemistry, 2018, 6, 565.	3.6	51
25	Graphene Family Materials in Bone Tissue Regeneration: Perspectives and Challenges. Nanoscale Research Letters, 2018, 13, 289.	5.7	74
26	Electrochemical synthesis of three-dimensional porous reduced graphene oxide film: Preparation and in vitro osteogenic activity evaluation. Colloids and Surfaces B: Biointerfaces, 2017, 155, 150-158.	5.0	22
27	Evaluation of tooth root surface area using a three-dimensional scanning technique and cone beam computed tomographic reconstruction in vitro. Archives of Oral Biology, 2017, 84, 13-18.	1.8	5
28	Enhanced Osseointegration of Porous Titanium Modified with Zeolitic Imidazolate Framework-8. ACS Applied Materials & Interfaces, 2017, 9, 25171-25183.	8.0	72
29	Osteogenic activity and antibacterial effect of porous titanium modified with metalâ€organic framework films. Journal of Biomedical Materials Research - Part A, 2017, 105, 834-846.	4.0	102
30	Osteogenic activity and antibacterial effect of zinc oxide/carboxylated graphene oxide nanocomposites: Preparation and in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2016, 147, 397-407.	5.0	58
31	Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. Surface and Coatings Technology, 2016, 286, 72-79.	4.8	128
32	Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition. Applied Surface Science, 2014, 295, 71-80.	6.1	63
33	Functionalized nanoscale graphene oxide for high efficient drug delivery of cisplatin. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	41
34	Comment on "Amine-Modified Graphene: Thrombo-Protective Safer Alternative to Graphene Oxide for Biomedical Applications― ACS Nano, 2014, 8, 1966-1966.	14.6	5