
Qingzhong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative regulation of the thermal stability of enveloped virus vaccines by surface charge engineering to prevent the self-aggregation of attachment glycoproteins. PLoS Pathogens, 2022, 18, e1010564.	4.7	5
2	Optimization of oncolytic effect of Newcastle disease virus Clone30 by selecting sensitive tumor host and constructing more oncolytic viruses. Gene Therapy, 2021, 28, 697-717.	4.5	15
3	The recombinant Newcastle disease virus Anhinga strain expressing human TRAIL exhibit antitumor effects on a glioma nude mice model. Journal of Medical Virology, 2021, 93, 3890-3898.	5.0	8
4	Pathogenic evaluation of a turkey coronavirus isolate (TCoV NC1743) in turkey poults for establishing a TCoV disease model. Veterinary Microbiology, 2021, 259, 109155.	1.9	1
5	Heterologous prime-boost regimens with HAdV-5 and NDV vectors elicit stronger immune responses to Ebola virus than homologous regimens in mice. Archives of Virology, 2021, 166, 3333-3341.	2.1	5
6	Novel Recombinant Newcastle Disease Virus-Based In Ovo Vaccines Bypass Maternal Immunity to Provide Full Protection from Early Virulent Challenge. Vaccines, 2021, 9, 1189.	4.4	3
7	Genetic stability of a Newcastle disease virus vectored infectious laryngotracheitis virus vaccine after serial passages in chicken embryos. Vaccine, 2020, 38, 925-932.	3.8	9
8	Expression of Two Foreign Genes by a Newcastle Disease Virus Vector From the Optimal Insertion Sites through a Combination of the ITU and IRES-Dependent Expression Approaches. Frontiers in Microbiology, 2020, 11, 769.	3.5	8
9	Limited Protection Conferred by Recombinant Newcastle Disease Virus Expressing Infectious Bronchitis Spike Protein. Avian Diseases, 2019, 64, 53.	1.0	7
10	A novel genotype VII Newcastle disease virus vaccine candidate generated by mutation in the L and F genes confers improved protection in chickens. Veterinary Microbiology, 2018, 216, 99-106.	1.9	19
11	Generation of a recombinant Newcastle disease virus expressing two foreign genes for use as a multivalent vaccine and gene therapy vector. Vaccine, 2018, 36, 4846-4850.	3.8	11
12	Newcastle disease virus vectored infectious laryngotracheitis vaccines protect commercial broiler chickens in the presence of maternally derived antibodies. Vaccine, 2017, 35, 789-795.	3.8	16
13	Recombinant Newcastle disease virus expressing human TRAIL as a potential candidate for hepatoma therapy. European Journal of Pharmacology, 2017, 802, 85-92.	3.5	21
14	Newcastle disease vaccines—A solved problem or a continuous challenge?. Veterinary Microbiology, 2017, 206, 126-136.	1.9	239
15	Infectious Bronchitis Virus S2 of 4/91 Expressed from Recombinant Virus Does Not Protect Against Ark-Type Challenge. Avian Diseases, 2017, 61, 397-401.	1.0	8
16	Engineered Newcastle disease virus expressing the F and G proteins of AMPV-C confers protection against challenges in turkeys. Scientific Reports, 2017, 7, 4025.	3.3	15
17	Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens. Virology, 2017, 509, 146-151.	2.4	18
18	Evaluation of a thermostable Newcastle disease virus strain TS09-C as an in-ovo vaccine for chickens. PLoS ONE, 2017, 12, e0172812.	2.5	13

QINGZHONG YU

#	Article	IF	CITATIONS
19	Generation of Newcastle Disease Virus (NDV) Recombinants Expressing the Infectious Laryngotracheitis Virus (ILTV) Glycoprotein gB or gD as Dual Vaccines. Methods in Molecular Biology, 2016, 1404, 89-101.	0.9	2
20	Molecular basis for the thermostability of Newcastle disease virus. Scientific Reports, 2016, 6, 22492.	3.3	20
21	Recombinant Newcastle disease virus (NDV/Anh-IL-2) expressing human IL-2 as a potential candidate for suppresses growth of hepatoma therapy. Journal of Pharmacological Sciences, 2016, 132, 24-30.	2.5	32
22	Expressing foreign genes by Newcastle disease virus for cancer therapy. Molecular Biology, 2015, 49, 171-178.	1.3	5
23	Development of a novel thermostable Newcastle disease virus vaccine vector for expression of a heterologous gene. Journal of General Virology, 2015, 96, 1219-1228.	2.9	34
24	Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism. Journal of General Virology, 2015, 96, 2028-2035.	2.9	20
25	Recombinant Newcastle Disease virus Expressing IL15 Demonstrates Promising Antitumor Efficiency in Melanoma Model. Technology in Cancer Research and Treatment, 2015, 14, 607-615.	1.9	39
26	Development of an improved vaccine evaluation protocol to compare the efficacy of Newcastle disease vaccines. Biologicals, 2015, 43, 136-145.	1.4	39
27	P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for for foreign gene expression. Journal of General Virology, 2015, 96, 40-45.	2.9	49
28	Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biology and Therapy, 2014, 15, 1226-1238.	3.4	75
29	Recombinant Newcastle Disease Virus Anhinga Strain (NDV/Anh-EGFP) for Hepatoma Therapy. Technology in Cancer Research and Treatment, 2014, 13, 169-175.	1.9	10
30	Methyltransferase-Defective Avian Metapneumovirus Vaccines Provide Complete Protection against Challenge with the Homologous Colorado Strain and the Heterologous Minnesota Strain. Journal of Virology, 2014, 88, 12348-12363.	3.4	21
31	Newcastle Disease Virus (NDV) Recombinants Expressing Infectious Laryngotracheitis Virus (ILTV) Glycoproteins gB and gD Protect Chickens against ILTV and NDV Challenges. Journal of Virology, 2014, 88, 8397-8406.	3.4	77
32	Infectious Bronchitis Virus S2 Expressed from Recombinant Virus Confers Broad Protection Against Challenge. Avian Diseases, 2014, 58, 83-89.	1.0	42
33	The pathogenicity of avian metapneumovirus subtype C wild bird isolates in domestic turkeys. Virology Journal, 2013, 10, 38.	3.4	12
34	HN gene C-terminal extension of Newcastle disease virus is not the determinant of the enteric tropism. Virus Genes, 2013, 47, 27-33.	1.6	6
35	Effects of the HN gene C-terminal extensions on the Newcastle disease virus virulence. Virus Genes, 2013, 47, 498-504.	1.6	8
36	Newcastle disease virus fusion and haemagglutinin-neuraminidase proteins contribute to its macrophage host range. Journal of General Virology, 2013, 94, 1189-1194.	2.9	29

QINGZHONG YU

#	Article	IF	CITATIONS
37	Application of the ligation-independent cloning (LIC) method for rapid construction of a minigenome rescue system for Newcastle disease virus VG/GA strain. Plasmid, 2013, 70, 314-320.	1.4	5
38	Characteristics of Pigeon Paramyxovirus Serotype-1 Isolates (PPMV-1) from the Russian Federation from 2001 to 2009. Avian Diseases, 2013, 57, 2-7.	1.0	36
39	Passive antibody transfer in chickens to model maternal antibody after avian influenza vaccination. Veterinary Immunology and Immunopathology, 2013, 152, 341-347.	1.2	39
40	Protection by Recombinant Newcastle Disease Viruses (NDV) Expressing the Glycoprotein (G) of Avian Metapneumovirus (aMPV) Subtype A or B against Challenge with Virulent NDV and aMPV. World Journal of Vaccines, 2013, 03, 130-139.	0.8	17
41	Biochemical characterization of the small hydrophobic protein of avian metapneumovirus. Virus Research, 2012, 167, 297-301.	2.2	2
42	Generation and characterization of a recombinant Newcastle disease virus expressing the red fluorescent protein for use in co-infection studies. Virology Journal, 2012, 9, 227.	3.4	14
43	Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys. Vaccine, 2011, 29, 8624-8633.	3.8	54
44	Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus. Virus Research, 2011, 160, 102-107.	2.2	2
45	Thermal Inactivation of Avian Viral and Bacterial Pathogens in an Effluent Treatment System within a Biosafety Level 2 and 3 Enhanced Facility. Applied Biosafety, 2011, 16, 206-217.	0.5	6
46	Deletion of the M2-2 gene from avian metapneumovirus subgroup C impairs virus replication and immunogenicity in Turkeys. Virus Genes, 2011, 42, 339-346.	1.6	6
47	The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system. Journal of General Virology, 2011, 92, 1205-1213.	2.9	6
48	A single amino acid substitution in the haemagglutinin-neuraminidase protein of Newcastle disease virus results in increased fusion promotion and decreased neuraminidase activities without changes in virus pathotype. Journal of General Virology, 2011, 92, 544-551.	2.9	14
49	Pathogenicity evaluation of different Newcastle disease virus chimeras in 4-week-old chickens. Tropical Animal Health and Production, 2010, 42, 1785-1795.	1.4	14
50	Generation and biological assessment of recombinant avian metapneumovirus subgroup C (aMPV-C) viruses containing different length of the G gene. Virus Research, 2010, 147, 182-188.	2.2	19
51	Comparison of Viral Shedding Following Vaccination With Inactivated and Live Newcastle Disease Vaccines Formulated With Wild-Type and Recombinant Viruses. Avian Diseases, 2009, 53, 39-49.	1.0	145
52	Glycoprotein gene truncation in avian metapneumovirus subtype C isolates from the United States. Virus Genes, 2008, 37, 266-272.	1.6	10
53	Evaluation of Newcastle disease virus chimeras expressing the Hemagglutinin-Neuraminidase protein of velogenic strains in the context of a mesogenic recombinant virus backbone. Virus Research, 2007, 129, 182-190.	2.2	59
54	Production and Characterization of Monoclonal Antibodies That React to the Nucleocapsid Protein of Avian Metapneumovirus Subtype C. Avian Diseases, 2006, 50, 419-424.	1.0	1

QINGZHONG YU

#	ARTICLE	IF	CITATIONS
55	Genomic sequences of low-virulence avian paramyxovirus-1 (Newcastle disease virus) isolates obtained from live-bird markets in North America not related to commonly utilized commercial vaccine strains. Veterinary Microbiology, 2005, 106, 7-16.	1.9	60
56	A Wild Goose Metapneumovirus Containing a Large Attachment Glycoprotein Is Avirulent but Immunoprotective in Domestic Turkeys. Journal of Virology, 2005, 79, 14834-14842.	3.4	28
57	Comparison of the full-length genome sequence of Avian metapneumovirus subtype C with other paramyxoviruses. Virus Research, 2005, 107, 83-92.	2.2	34
58	Recombinant Respiratory Syncytial Viruses Lacking the C-Terminal Third of the Attachment (G) Protein Are Immunogenic and Attenuated In Vivo and In Vitro. Journal of Virology, 2004, 78, 5773-5783.	3.4	14
59	Characterization of Recombinant Respiratory Syncytial Viruses with the Region Responsible for Type 2 T-Cell Responses and Pulmonary Eosinophilia Deleted from the Attachment (G) Protein. Journal of Virology, 2004, 78, 8446-8454.	3.4	17
60	The bulk of the phosphorylation of human respiratory syncytial virus phosphoprotein is not essential but modulates viral RNA transcription and replication. Microbiology (United Kingdom), 2000, 81, 129-133.	1.8	42
61	Cloning into M13 Bacteriophage Vectors. , 1996, 58, 343-348.		1
62	Sequence and in vitro expression of the phosphoprotein gene of avian pneumovirus. Virus Research, 1995, 36, 247-257.	2.2	29
63	Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. Journal of Virology, 1995, 69, 2412-2419.	3.4	151
64	Characterization of Two Density Populations of Feline Calicivirus Particles. Virology, 1994, 205, 530-533.	2.4	11
65	Cloning and sequencing of the matrix protein (M) gene of turkey rhinotracheitis virus reveal a gene order different from that of respiratory syncytial virus. Virology, 1992, 186, 426-434.	2.4	75
66	Sequence and in vitro expression of the M2 gene of turkey rhinotracheitis pneumovirus. Journal of General Virology, 1992, 73, 1355-1363.	2.9	40
67	Deduced Amino Acid Sequence of the Fusion Glycoprotein of Turkey Rhinotracheitis Virus has Greater Identity with that of Human Respiratory Syncytial Virus, a Pneumovirus, than that of Paramyxoviruses and Morbilliviruses. Journal of General Virology, 1991, 72, 75-81.	2.9	49