Qingzhong Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365801/publications.pdf

Version: 2024-02-01

257450 265206 1,941 67 24 42 h-index citations g-index papers 67 67 67 1387 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Newcastle disease vaccinesâ€"A solved problem or a continuous challenge?. Veterinary Microbiology, 2017, 206, 126-136.	1.9	239
2	Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. Journal of Virology, 1995, 69, 2412-2419.	3.4	151
3	Comparison of Viral Shedding Following Vaccination With Inactivated and Live Newcastle Disease Vaccines Formulated With Wild-Type and Recombinant Viruses. Avian Diseases, 2009, 53, 39-49.	1.0	145
4	Newcastle Disease Virus (NDV) Recombinants Expressing Infectious Laryngotracheitis Virus (ILTV) Glycoproteins gB and gD Protect Chickens against ILTV and NDV Challenges. Journal of Virology, 2014, 88, 8397-8406.	3.4	77
5	Cloning and sequencing of the matrix protein (M) gene of turkey rhinotracheitis virus reveal a gene order different from that of respiratory syncytial virus. Virology, 1992, 186, 426-434.	2.4	75
6	Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biology and Therapy, 2014, 15, 1226-1238.	3.4	75
7	Genomic sequences of low-virulence avian paramyxovirus-1 (Newcastle disease virus) isolates obtained from live-bird markets in North America not related to commonly utilized commercial vaccine strains. Veterinary Microbiology, 2005, 106, 7-16.	1.9	60
8	Evaluation of Newcastle disease virus chimeras expressing the Hemagglutinin-Neuraminidase protein of velogenic strains in the context of a mesogenic recombinant virus backbone. Virus Research, 2007, 129, 182-190.	2.2	59
9	Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys. Vaccine, 2011, 29, 8624-8633.	3.8	54
10	Deduced Amino Acid Sequence of the Fusion Glycoprotein of Turkey Rhinotracheitis Virus has Greater Identity with that of Human Respiratory Syncytial Virus, a Pneumovirus, than that of Paramyxoviruses and Morbilliviruses. Journal of General Virology, 1991, 72, 75-81.	2.9	49
11	P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression. Journal of General Virology, 2015, 96, 40-45.	2.9	49
12	Infectious Bronchitis Virus S2 Expressed from Recombinant Virus Confers Broad Protection Against Challenge. Avian Diseases, 2014, 58, 83-89.	1.0	42
13	The bulk of the phosphorylation of human respiratory syncytial virus phosphoprotein is not essential but modulates viral RNA transcription and replication. Microbiology (United Kingdom), 2000, 81, 129-133.	1.8	42
14	Sequence and in vitro expression of the M2 gene of turkey rhinotracheitis pneumovirus. Journal of General Virology, 1992, 73, 1355-1363.	2.9	40
15	Passive antibody transfer in chickens to model maternal antibody after avian influenza vaccination. Veterinary Immunology and Immunopathology, 2013, 152, 341-347.	1.2	39
16	Recombinant Newcastle Disease virus Expressing IL15 Demonstrates Promising Antitumor Efficiency in Melanoma Model. Technology in Cancer Research and Treatment, 2015, 14, 607-615.	1.9	39
17	Development of an improved vaccine evaluation protocol to compare the efficacy of Newcastle disease vaccines. Biologicals, 2015, 43, 136-145.	1.4	39
18	Characteristics of Pigeon Paramyxovirus Serotype-1 Isolates (PPMV-1) from the Russian Federation from 2001 to 2009. Avian Diseases, 2013, 57, 2-7.	1.0	36

#	Article	lF	CITATIONS
19	Comparison of the full-length genome sequence of Avian metapneumovirus subtype C with other paramyxoviruses. Virus Research, 2005, 107, 83-92.	2.2	34
20	Development of a novel thermostable Newcastle disease virus vaccine vector for expression of a heterologous gene. Journal of General Virology, 2015, 96, 1219-1228.	2.9	34
21	Recombinant Newcastle disease virus (NDV/Anh-IL-2) expressing human IL-2 as a potential candidate for suppresses growth of hepatoma therapy. Journal of Pharmacological Sciences, 2016, 132, 24-30.	2.5	32
22	Sequence and in vitro expression of the phosphoprotein gene of avian pneumovirus. Virus Research, 1995, 36, 247-257.	2.2	29
23	Newcastle disease virus fusion and haemagglutinin-neuraminidase proteins contribute to its macrophage host range. Journal of General Virology, 2013, 94, 1189-1194.	2.9	29
24	A Wild Goose Metapneumovirus Containing a Large Attachment Glycoprotein Is Avirulent but Immunoprotective in Domestic Turkeys. Journal of Virology, 2005, 79, 14834-14842.	3.4	28
25	Methyltransferase-Defective Avian Metapneumovirus Vaccines Provide Complete Protection against Challenge with the Homologous Colorado Strain and the Heterologous Minnesota Strain. Journal of Virology, 2014, 88, 12348-12363.	3.4	21
26	Recombinant Newcastle disease virus expressing human TRAIL as a potential candidate for hepatoma therapy. European Journal of Pharmacology, 2017, 802, 85-92.	3.5	21
27	Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism. Journal of General Virology, 2015, 96, 2028-2035.	2.9	20
28	Molecular basis for the thermostability of Newcastle disease virus. Scientific Reports, 2016, 6, 22492.	3.3	20
29	Generation and biological assessment of recombinant avian metapneumovirus subgroup C (aMPV-C) viruses containing different length of the G gene. Virus Research, 2010, 147, 182-188.	2.2	19
30	A novel genotype VII Newcastle disease virus vaccine candidate generated by mutation in the L and F genes confers improved protection in chickens. Veterinary Microbiology, 2018, 216, 99-106.	1.9	19
31	Two single mutations in the fusion protein of Newcastle disease virus confer hemagglutinin-neuraminidase independent fusion promotion and attenuate the pathogenicity in chickens. Virology, 2017, 509, 146-151.	2.4	18
32	Characterization of Recombinant Respiratory Syncytial Viruses with the Region Responsible for Type 2 T-Cell Responses and Pulmonary Eosinophilia Deleted from the Attachment (G) Protein. Journal of Virology, 2004, 78, 8446-8454.	3.4	17
33	Protection by Recombinant Newcastle Disease Viruses (NDV) Expressing the Glycoprotein (G) of Avian Metapneumovirus (aMPV) Subtype A or B against Challenge with Virulent NDV and aMPV. World Journal of Vaccines, 2013, 03, 130-139.	0.8	17
34	Newcastle disease virus vectored infectious laryngotracheitis vaccines protect commercial broiler chickens in the presence of maternally derived antibodies. Vaccine, 2017, 35, 789-795.	3.8	16
35	Engineered Newcastle disease virus expressing the F and G proteins of AMPV-C confers protection against challenges in turkeys. Scientific Reports, 2017, 7, 4025.	3.3	15
36	Optimization of oncolytic effect of Newcastle disease virus Clone 30 by selecting sensitive tumor host and constructing more oncolytic viruses. Gene Therapy, 2021, 28, 697-717.	4.5	15

#	Article	IF	CITATIONS
37	Recombinant Respiratory Syncytial Viruses Lacking the C-Terminal Third of the Attachment (G) Protein Are Immunogenic and Attenuated In Vivo and In Vitro. Journal of Virology, 2004, 78, 5773-5783.	3.4	14
38	Pathogenicity evaluation of different Newcastle disease virus chimeras in 4-week-old chickens. Tropical Animal Health and Production, 2010, 42, 1785-1795.	1.4	14
39	A single amino acid substitution in the haemagglutinin-neuraminidase protein of Newcastle disease virus results in increased fusion promotion and decreased neuraminidase activities without changes in virus pathotype. Journal of General Virology, 2011, 92, 544-551.	2.9	14
40	Generation and characterization of a recombinant Newcastle disease virus expressing the red fluorescent protein for use in co-infection studies. Virology Journal, 2012, 9, 227.	3.4	14
41	Evaluation of a thermostable Newcastle disease virus strain TS09-C as an in-ovo vaccine for chickens. PLoS ONE, 2017, 12, e0172812.	2.5	13
42	The pathogenicity of avian metapneumovirus subtype C wild bird isolates in domestic turkeys. Virology Journal, 2013, 10, 38.	3.4	12
43	Characterization of Two Density Populations of Feline Calicivirus Particles. Virology, 1994, 205, 530-533.	2.4	11
44	Generation of a recombinant Newcastle disease virus expressing two foreign genes for use as a multivalent vaccine and gene therapy vector. Vaccine, 2018, 36, 4846-4850.	3.8	11
45	Glycoprotein gene truncation in avian metapneumovirus subtype C isolates from the United States. Virus Genes, 2008, 37, 266-272.	1.6	10
46	Recombinant Newcastle Disease Virus Anhinga Strain (NDV/Anh-EGFP) for Hepatoma Therapy. Technology in Cancer Research and Treatment, 2014, 13, 169-175.	1.9	10
47	Genetic stability of a Newcastle disease virus vectored infectious laryngotracheitis virus vaccine after serial passages in chicken embryos. Vaccine, 2020, 38, 925-932.	3.8	9
48	Effects of the HN gene C-terminal extensions on the Newcastle disease virus virulence. Virus Genes, 2013, 47, 498-504.	1.6	8
49	Infectious Bronchitis Virus S2 of 4/91 Expressed from Recombinant Virus Does Not Protect Against Ark-Type Challenge. Avian Diseases, 2017, 61, 397-401.	1.0	8
50	Expression of Two Foreign Genes by a Newcastle Disease Virus Vector From the Optimal Insertion Sites through a Combination of the ITU and IRES-Dependent Expression Approaches. Frontiers in Microbiology, 2020, 11, 769.	3.5	8
51	The recombinant Newcastle disease virus Anhinga strain expressing human TRAIL exhibit antitumor effects on a glioma nude mice model. Journal of Medical Virology, 2021, 93, 3890-3898.	5.0	8
52	Limited Protection Conferred by Recombinant Newcastle Disease Virus Expressing Infectious Bronchitis Spike Protein. Avian Diseases, 2019, 64, 53.	1.0	7
53	Thermal Inactivation of Avian Viral and Bacterial Pathogens in an Effluent Treatment System within a Biosafety Level 2 and 3 Enhanced Facility. Applied Biosafety, 2011, 16, 206-217.	0.5	6
54	Deletion of the M2-2 gene from avian metapneumovirus subgroup C impairs virus replication and immunogenicity in Turkeys. Virus Genes, 2011, 42, 339-346.	1.6	6

#	Article	IF	CITATIONS
55	The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system. Journal of General Virology, 2011, 92, 1205-1213.	2.9	6
56	HN gene C-terminal extension of Newcastle disease virus is not the determinant of the enteric tropism. Virus Genes, 2013, 47, 27-33.	1.6	6
57	Application of the ligation-independent cloning (LIC) method for rapid construction of a minigenome rescue system for Newcastle disease virus VG/GA strain. Plasmid, 2013, 70, 314-320.	1.4	5
58	Expressing foreign genes by Newcastle disease virus for cancer therapy. Molecular Biology, 2015, 49, 171-178.	1.3	5
59	Heterologous prime-boost regimens with HAdV-5 and NDV vectors elicit stronger immune responses to Ebola virus than homologous regimens in mice. Archives of Virology, 2021, 166, 3333-3341.	2.1	5
60	Quantitative regulation of the thermal stability of enveloped virus vaccines by surface charge engineering to prevent the self-aggregation of attachment glycoproteins. PLoS Pathogens, 2022, 18, e1010564.	4.7	5
61	Novel Recombinant Newcastle Disease Virus-Based In Ovo Vaccines Bypass Maternal Immunity to Provide Full Protection from Early Virulent Challenge. Vaccines, 2021, 9, 1189.	4.4	3
62	Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus. Virus Research, 2011, 160, 102-107.	2.2	2
63	Biochemical characterization of the small hydrophobic protein of avian metapneumovirus. Virus Research, 2012, 167, 297-301.	2.2	2
64	Generation of Newcastle Disease Virus (NDV) Recombinants Expressing the Infectious Laryngotracheitis Virus (ILTV) Glycoprotein gB or gD as Dual Vaccines. Methods in Molecular Biology, 2016, 1404, 89-101.	0.9	2
65	Cloning into M13 Bacteriophage Vectors. , 1996, 58, 343-348.		1
66	Production and Characterization of Monoclonal Antibodies That React to the Nucleocapsid Protein of Avian Metapneumovirus Subtype C. Avian Diseases, 2006, 50, 419-424.	1.0	1
67	Pathogenic evaluation of a turkey coronavirus isolate (TCoV NC1743) in turkey poults for establishing a TCoV disease model. Veterinary Microbiology, 2021, 259, 109155.	1.9	1