
Kazuhide Inoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365396/publications.pdf Version: 2024-02-01

KAZUHIDE MOUE

#	Article	IF	CITATIONS
1	Improvement of the affinity of an anti-rat P2X4 receptor antibody by introducing electrostatic interactions. Scientific Reports, 2022, 12, 131.	3.3	3
2	The Role of ATP Receptors in Pain Signaling. Neurochemical Research, 2022, 47, 2454-2468.	3.3	16
3	The Role of Microglial Purinergic Receptors in Pain Signaling. Molecules, 2022, 27, 1919.	3.8	10
4	Overview for the study of P2 receptors: From P2 receptor history to neuropathic pain studies. Journal of Pharmacological Sciences, 2022, 149, 73-80.	2.5	4
5	Astrocytic STAT3 activation and chronic itch require IP3R1/TRPC-dependent Ca2+ signals in mice. Journal of Allergy and Clinical Immunology, 2021, 147, 1341-1353.	2.9	29
6	Nociceptive signaling of P2X receptors in chronic pain states. Purinergic Signalling, 2021, 17, 41-47.	2.2	30
7	Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochemical Pharmacology, 2021, 187, 114309.	4.4	44
8	New Inhibitory Effects of Cilnidipine on Microglial P2X7 Receptors and IL-1β Release: An Involvement in its Alleviating Effect on Neuropathic Pain. Cells, 2021, 10, 434.	4.1	14
9	Analysis of binding residues in monoclonal antibody with high affinity for the head domain of the rat P2X4 receptor. Journal of Biochemistry, 2021, 169, 491-496.	1.7	1
10	Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity. Nature Neuroscience, 2020, 23, 1376-1387.	14.8	80
11	A new mechanism for somatosensory information processing by descending noradrenergic pathway via spinal dorsal horn astrocytes. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2020, 93, 2-YIA-31.	0.0	Ο
12	Evidence for detection of rat P2X4 receptor expressed on cells by generating monoclonal antibodies recognizing the native structure. Purinergic Signalling, 2019, 15, 27-35.	2.2	15
13	Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Science Advances, 2019, 5, eaav5086.	10.3	60
14	Role of the P2X4 receptor in neuropathic pain. Current Opinion in Pharmacology, 2019, 47, 33-39.	3.5	40
15	Hyperactivation of proprioceptors induces microglia-mediated long-lasting pain in a rat model of chronic fatigue syndrome. Journal of Neuroinflammation, 2019, 16, 67.	7.2	20
16	Role of P2X3 receptors in scratching behavior in mouse models. Journal of Allergy and Clinical Immunology, 2019, 143, 1252-1254.e8.	2.9	15
17	Transcription factor MafB contributes to the activation of spinal microglia underlying neuropathic pain development. Glia, 2019, 67, 729-740.	4.9	37
18	Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nature Reviews Neuroscience, 2018, 19, 138-152.	10.2	566

#	Article	IF	CITATIONS
19	A state-of-the-art perspective on microgliopathic pain. Open Biology, 2018, 8, 180154.	3.6	12
20	Astrocytic Ca2+ responses in the spinal dorsal horn by noxious stimuli to the skin. Journal of Pharmacological Sciences, 2018, 137, 101-104.	2.5	10
21	Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex. Nature Communications, 2018, 9, 1886.	12.8	151
22	Temporal Kinetics of Microgliosis in the Spinal Dorsal Horn after Peripheral Nerve Injury in Rodents. Biological and Pharmaceutical Bulletin, 2018, 41, 1096-1102.	1.4	33
23	Optogenetic Activation of Non-Nociceptive Al ² Fibers Induces Neuropathic Pain-Like Sensory and Emotional Behaviors after Nerve Injury in Rats. ENeuro, 2018, 5, ENEURO.0450-17.2018.	1.9	58
24	Rapid and selective inhibition of dorsal horn inhibitory interneurons induces morphine-resistant spontaneous nocifensive behaviors. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-2-13.	0.0	0
25	New pharmacological effects of approved drugs targeting P2X7 receptors against the release of IL-1Î ² from microglial cells and neuropathic pain after peripheral nerve injury. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-2-19.	0.0	0
26	Optogenetic activation of non-nociceptive AÎ ² fibers induces neuropathic pain-like sensory and emotional behaviors after nerve injury in rats. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-2-31.	0.0	0
27	P2Y12 receptors in primary microglia activate nuclear factor of activated T ell signaling to induce C–C chemokine 3 expression. Journal of Neurochemistry, 2017, 141, 100-110.	3.9	17
28	Chemogenetic silencing of GABAergic dorsal horn interneurons induces morphine-resistant spontaneous nocifensive behaviours. Scientific Reports, 2017, 7, 4739.	3.3	32
29	Purinergic signaling in microglia in the pathogenesis of neuropathic pain. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 174-182.	3.8	36
30	Peripheral Nerve Injury: a Mouse Model of Neuropathic Pain. Bio-protocol, 2017, 7, e2252.	0.4	2
31	Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury. Scientific Reports, 2016, 6, 23701.	3.3	46
32	Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nature Communications, 2016, 7, 12529.	12.8	142
33	BK channels in microglia are required for morphine-induced hyperalgesia. Nature Communications, 2016, 7, 11697.	12.8	63
34	Inhibition of G0/G1 Switch 2 Ameliorates Renal Inflammation in Chronic Kidney Disease. EBioMedicine, 2016, 13, 262-273.	6.1	21
35	Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nature Communications, 2016, 7, 13102.	12.8	105
36	A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Scientific Reports, 2016, 6, 32461.	3.3	95

#	Article	IF	CITATIONS
37	Purinergic P2Y ₆ receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin Il–induced hypertension. Science Signaling, 2016, 9, ra7.	3.6	63
38	Transcriptional regulation in microglia and neuropathic pain. Pain Management, 2016, 6, 91-94.	1.5	5
39	Neuron–microglia interaction by purinergic signaling in neuropathic pain following neurodegeneration. Neuropharmacology, 2016, 104, 76-81.	4.1	71
40	Duloxetine Inhibits Microglial P2X4 Receptor Function and Alleviates Neuropathic Pain after Peripheral Nerve Injury. PLoS ONE, 2016, 11, e0165189.	2.5	54
41	The Research for the Mechanism of Chronically Intractable Pain Based on the Functions of Microglia as Brain Immunocompetent Cell. , 2016, , 641-648.		1
42	Transcription factor IRF1 is responsible for IRF8-mediated IL-1β expression in reactive microglia. Journal of Pharmacological Sciences, 2015, 128, 216-220.	2.5	38
43	A new minimally-invasive method for microinjection into the mouse spinal dorsal horn. Scientific Reports, 2015, 5, 14306.	3.3	69
44	Effect of adenosine system in the action of oseltamivir on behavior in mice. Neuroscience Letters, 2015, 599, 7-11.	2.1	3
45	STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nature Medicine, 2015, 21, 927-931.	30.7	154
46	Solution structure of the rat P2X4 receptor head domain involved in inhibitory metal binding. FEBS Letters, 2015, 589, 680-686.	2.8	20
47	Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain. Nature Communications, 2014, 5, 3771.	12.8	155
48	Acute hyperglycemia impairs functional improvement after spinal cord injury in mice and humans. Science Translational Medicine, 2014, 6, 256ra137.	12.4	68
49	Involvement of the Chemokine CCL3 and the Purinoceptor P2×7 in the Spinal Cord in Paclitaxel-Induced Mechanical Allodynia. Molecular Pain, 2014, 10, 1744-8069-10-53.	2.1	62
50	IRF8 is a transcriptional determinant for microglial motility. Purinergic Signalling, 2014, 10, 515-521.	2.2	27
51	A Chronic fatigue syndrome model demonstrates mechanical allodynia and muscular hyperalgesia via spinal microglial activation. Clia, 2014, 62, 1407-1417.	4.9	53
52	Interferon Regulatory Factor 8 Expressed in Microglia Contributes to Tactile Allodynia Induced by Repeated Cold Stress in Rodents. Journal of Pharmacological Sciences, 2014, 126, 172-176.	2.5	22
53	Chemokine (C-C motif) Receptor 5 Is an Important Pathological Regulator in the Development and Maintenance of Neuropathic Pain. Anesthesiology, 2014, 120, 1491-1503.	2.5	61
54	Purinergic receptors in microglia: Functional modal shifts of microglia mediated by P2 and P1 receptors. Glia, 2013, 61, 47-54.	4.9	169

#	Article	IF	CITATIONS
55	Microglia and intractable chronic pain. Glia, 2013, 61, 55-61.	4.9	94
56	Preparation and characterization of a monoclonal antibody against the refolded and functional extracellular domain of rat P2X4 receptor. Journal of Biochemistry, 2013, 153, 275-282.	1.7	18
57	Microglial Regulation of Neuropathic Pain. Journal of Pharmacological Sciences, 2013, 121, 89-94.	2.5	102
58	P2X4 receptors and neuropathic pain. Frontiers in Cellular Neuroscience, 2013, 7, 191.	3.7	106
59	Intrathecal Infusion of Microglia Cells. Methods in Molecular Biology, 2013, 1041, 291-294.	0.9	1
60	Purinergic system, microglia and neuropathic pain. Current Opinion in Pharmacology, 2012, 12, 74-79.	3.5	44
61	IRF8 Is a Critical Transcription Factor for Transforming Microglia into a Reactive Phenotype. Cell Reports, 2012, 1, 334-340.	6.4	249
62	Inhibition of P2X₄ receptor on spinal microglia attenuates mechanical allodynia in experimental autoimmune neuritis rats . Pain Research, 2012, 27, 27-36.	0.1	7
63	P2Y receptors in microglia and neuroinflammation. Environmental Sciences Europe, 2012, 1, 493-501.	5.5	23
64	Involvement of protein kinase D in uridine diphosphateâ€ i nduced microglial macropinocytosis and phagocytosis. Glia, 2012, 60, 1094-1105.	4.9	13
65	CCL2 promotes P2X4 receptor trafficking to the cell surface of microglia. Purinergic Signalling, 2012, 8, 301-310.	2.2	75
66	Adenosine A3 receptor is involved in ADPâ€induced microglial process extension and migration. Journal of Neurochemistry, 2012, 121, 217-227.	3.9	66
67	Purinergic systems, neuropathic pain and the role of microglia. Experimental Neurology, 2012, 234, 293-301.	4.1	61
68	P2X4 Receptors of Microglia in Neuropathic Pain. CNS and Neurological Disorders - Drug Targets, 2012, 11, 699-704.	1.4	20
69	Role of Purinergic Receptors in CNS Function and Neuroprotection. Advances in Pharmacology, 2011, 61, 495-528.	2.0	32
70	Platelet-Activating Factor and Pain. Biological and Pharmaceutical Bulletin, 2011, 34, 1159-1162.	1.4	23
71	Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO Journal, 2011, 30, 1864-1873.	7.8	146
72	Astrocytic P2Y ₁ receptor is involved in the regulation of cytokine/chemokine transcription and cerebral damage in a rat model of cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1930-1941.	4.3	87

#	Article	IF	CITATIONS
73	Involvement of vasodilator-stimulated phosphoprotein in UDP-induced microglial actin aggregation via PKC- and Rho-dependent pathways. Purinergic Signalling, 2011, 7, 403-411.	2.2	8
74	Reduced Spinal Microglial Activation and Neuropathic Pain after Nerve Injury in Mice Lacking all Three Nitric Oxide Synthases. Molecular Pain, 2011, 7, 1744-8069-7-50.	2.1	44
75	JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain, 2011, 134, 1127-1139.	7.6	260
76	Pain and purinergic signaling. Brain Research Reviews, 2010, 63, 222-232.	9.0	117
77	P2Y ₁₂ receptorâ€mediated integrinâ€Î²1 activation regulates microglial process extension induced by ATP. Clia, 2010, 58, 790-801.	4.9	121
78	Nerve injuryâ€activated microglia engulf myelinated axons in a P2Y12 signalingâ€dependent manner in the dorsal horn. Glia, 2010, 58, 1838-1846.	4.9	68
79	P2X7 receptor activation induces CXCL2 production in microglia through NFAT and PKC/MAPK pathways. Journal of Neurochemistry, 2010, 114, 810-819.	3.9	129
80	Role of PAF Receptor in Proinflammatory Cytokine Expression in the Dorsal Root Ganglion and Tactile Allodynia in a Rodent Model of Neuropathic Pain. PLoS ONE, 2010, 5, e10467.	2.5	44
81	IFN-γ receptor signaling mediates spinal microglia activation driving neuropathic pain. Proceedings of the United States of America, 2009, 106, 8032-8037.	7.1	245
82	Direct Observation of ATP-Induced Conformational Changes in Single P2X4 Receptors. PLoS Biology, 2009, 7, e1000103.	5.6	98
83	Mechanisms underlying fibronectinâ€induced upâ€regulation of P2X ₄ R expression in microglia: distinct roles of PI3K–Akt and MEK–ERK signalling pathways. Journal of Cellular and Molecular Medicine, 2009, 13, 3251-3259.	3.6	58
84	P2Y ₁ receptor signaling enhances neuroprotection by astrocytes against oxidative stress via ILâ€6 release in hippocampal cultures. Glia, 2009, 57, 244-257.	4.9	103
85	Microglia and neuropathic pain. Glia, 2009, 57, 1469-1479.	4.9	245
86	Activation of P2X ₇ receptors induces CCL3 production in microglial cells through transcription factor NFAT. Journal of Neurochemistry, 2009, 108, 115-125.	3.9	113
87	Chapter 12 P2Y6â€Evoked Microglial Phagocytosis. International Review of Neurobiology, 2009, 85, 159-163.	2.0	50
88	Behavioral Phenotypes of Mice Lacking Purinergic P2X ₄ Receptors in Acute and Chronic Pain Assays. Molecular Pain, 2009, 5, 1744-8069-5-28.	2.1	166
89	Intrathecal Delivery of PDCF Produces Tactile Allodynia through its Receptors in Spinal Microglia. Molecular Pain, 2009, 5, 1744-8069-5-23.	2.1	31
90	Activation of Cytosolic Phospholipase A2 in Dorsal Root Ganglion Neurons by Ca2+/Calmodulin-Dependent Protein Kinase II after Peripheral Nerve Injury. Molecular Pain, 2009, 5, 1744-8069-5-22.	2.1	36

#	Article	IF	CITATIONS
91	Antidepressants Inhibit P2X ₄ Receptor Function: a Possible Involvement in Neuropathic Pain Relief. Molecular Pain, 2009, 5, 1744-8069-5-20.	2.1	107
92	Akt activation is involved in P2Y12 receptorâ€mediated chemotaxis of microglia. Journal of Neuroscience Research, 2008, 86, 1511-1519.	2.9	100
93	Lyn tyrosine kinase is required for P2X ₄ receptor upregulation and neuropathic pain after peripheral nerve injury. Glia, 2008, 56, 50-58.	4.9	99
94	Activation of dorsal horn microglia contributes to diabetesâ€induced tactile allodynia via extracellular signalâ€regulated protein kinase signaling. Glia, 2008, 56, 378-386.	4.9	149
95	Fibronectin/integrin system is involved in P2X ₄ receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia, 2008, 56, 579-585.	4.9	105
96	P2Y6 receptor-Gα12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO Journal, 2008, 27, 3104-3115.	7.8	169
97	Chronic Pain and Microglia: The Role of ATP. Novartis Foundation Symposium, 2008, , 55-67.	1.1	18
98	P2Y ₁₂ Receptors in Spinal Microglia Are Required for Neuropathic Pain after Peripheral Nerve Injury. Journal of Neuroscience, 2008, 28, 4949-4956.	3.6	254
99	2S10-4 Touch sensation causes abnormal pain(2S10 Olfaction, Taste and Pain: Sensory Modal Shifts and) Tj ETQq 48, S15.	1 1 0.784 0.1	314 rgBT (0
100	UDP Facilitates Microglial Phagocytosis Through P2Y6 Receptors. Cell Adhesion and Migration, 2007, 1, 131-132.	2.7	27
101	Neuronal â€~On' and â€~Off' signals control microglia. Trends in Neurosciences, 2007, 30, 596-602.	8.6	690
102	Involvement of P2X4and P2Y12receptors in ATP-induced microglial chemotaxis. Glia, 2007, 55, 604-616.	4.9	273
103	UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature, 2007, 446, 1091-1095.	27.8	698
104	Long-term potentiation of neuronal excitation by neuron-glia interactions in the rat spinal dorsal horn. European Journal of Neuroscience, 2007, 25, 1297-1306.	2.6	77
105	Reduced pain behaviors and extracellular signalâ€related protein kinase activation in primary sensory neurons by peripheral tissue injury in mice lacking plateletâ€activating factor receptor. Journal of Neurochemistry, 2007, 102, 1658-1668.	3.9	29
106	The role of nucleotides in the neuron–glia communication responsible for the brain functions. Journal of Neurochemistry, 2007, 102, 1447-1458.	3.9	92
107	P2 receptors and chronic pain. Purinergic Signalling, 2007, 3, 135-144.	2.2	54
108	Modification of neuropathic pain sensation through microglial ATP receptors. Purinergic Signalling, 2007, 3, 311-316.	2.2	36

#	Article	IF	CITATIONS
109	Upregulation of P2Y2 receptors by retinoids in normal human epidermal keratinocytes. Purinergic Signalling, 2006, 2, 491-498.	2.2	9
110	The function of microglia through purinergic receptors: Neuropathic pain and cytokine release. , 2006, 109, 210-226.		295
111	Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X4, a key molecule for mechanical allodynia. Clia, 2006, 53, 769-775.	4.9	84
112	Extracellular ATP counteracts the ERK1/2-mediated death-promoting signaling cascades in astrocytes. Glia, 2006, 54, 606-618.	4.9	36
113	ATP receptors of microglia involved in pain. Novartis Foundation Symposium, 2006, 276, 263-72; discussion 273-81.	1.1	42
114	BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 2005, 438, 1017-1021.	27.8	1,690
115	Cytoprotection against oxidative stress-induced damage of astrocytes by extracellular ATP via P2Y1 receptors. Glia, 2005, 49, 288-300.	4.9	63
116	Involvement of β1 integrin in microglial chemotaxis and proliferation on fibronectin: Different regulations by ADP through PKA. Glia, 2005, 52, 98-107.	4.9	89
117	Neuropathic pain and spinal microglia: a big problem from molecules in â€~small' glia. Trends in Neurosciences, 2005, 28, 101-107.	8.6	716
118	Production and Release of Neuroprotective Tumor Necrosis Factor by P2X7 Receptor-Activated Microglia. Journal of Neuroscience, 2004, 24, 1-7.	3.6	377
119	Activation of p38 mitogenâ€activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia, 2004, 45, 89-95.	4.9	469
120	Direct Excitation of Inhibitory Interneurons by Extracellular ATP Mediated by P2Y1 Receptors in the Hippocampal Slice. Journal of Neuroscience, 2004, 24, 10835-10845.	3.6	90
121	Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochemical Journal, 2004, 380, 329-338.	3.7	211
122	ATP induced three types of pain behaviors, including allodynia. Drug Development Research, 2003, 59, 56-63.	2.9	19
123	Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia, 2003, 44, 242-250.	4.9	218
124	Neurone-to-astrocyte communication by endogenous ATP in mixed culture of rat hippocampal neurones and astrocytes. Drug Development Research, 2003, 59, 88-94.	2.9	4
125	P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature, 2003, 424, 778-783.	27.8	1,397
126	Potentiation of NMDA receptor-mediated synaptic responses by microglia. Molecular Brain Research, 2003, 119, 160-169.	2.3	46

#	Article	IF	CITATIONS
127	Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11023-11028.	7.1	225
128	Possible Involvement of P2Y ₂ Metabotropic Receptors in ATP-Induced Transient Receptor Potential Vanilloid Receptor 1-Mediated Thermal Hypersensitivity. Journal of Neuroscience, 2003, 23, 6058-6062.	3.6	217
129	Mechanisms Underlying the Neuronal Calcium Sensor-1-evoked Enhancement of Exocytosis in PC12 Cells. Journal of Biological Chemistry, 2002, 277, 30315-30324.	3.4	83
130	Adenosine triphosphate accelerates recovery from hypoxic/hypoglycemic perturbation of guinea pig hippocampal neurotransmission via a P2 receptor. Brain Research, 2002, 952, 31-37.	2.2	21
131	Microglial activation by purines and pyrimidines. Glia, 2002, 40, 156-163.	4.9	300
132	Downregulation of P2X3receptor-dependent sensory functions in A/J inbred mouse strain. European Journal of Neuroscience, 2002, 15, 1444-1450.	2.6	29
133	Role of endogenous ATP at the incision area in a rat model of postoperative pain. NeuroReport, 2001, 12, 1701-1704.	1.2	41
134	Extracellular ATP or ADP Induce Chemotaxis of Cultured Microglia through G _{i/o} -Coupled P2Y Receptors. Journal of Neuroscience, 2001, 21, 1975-1982.	3.6	516
135	Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. Journal of Neurochemistry, 2001, 78, 1339-1349.	3.9	159
136	Mechanism of the inhibitory action of ATP in rat hippocampus. Drug Development Research, 2001, 52, 95-103.	2.9	3
137	Independent signaling pathways in ATP-evoked secretion of plasminogen and cytokines from microglia. Drug Development Research, 2001, 53, 166-171.	2.9	1
138	Mechanical Allodynia Caused by Intraplantar Injection of P2X Receptor Agonist in Rats: Involvement of Heteromeric P2X _{2/3} Receptor Signaling in Capsaicin-Insensitive Primary Afferent Neurons. Journal of Neuroscience, 2000, 20, RC90-RC90.	3.6	168
139	Extracellular ATP Triggers Tumor Necrosis Factorâ€Î± Release from Rat Microglia. Journal of Neurochemistry, 2000, 75, 965-972.	3.9	402
140	Cell type-specific ATP-activated responses in rat dorsal root ganglion neurons. British Journal of Pharmacology, 1999, 126, 429-436.	5.4	169
141	In vivo pathway of thermal hyperalgesia by intrathecal administration of α,β-methylene ATP in mouse spinal cord: Involvement of the glutamate-NMDA receptor system. British Journal of Pharmacology, 1999, 127, 449-456.	5.4	100
142	Evidence for the involvement of spinal endogenous ATP and P2X receptors in nociceptive responses caused by formalin and capsaicin in mice. British Journal of Pharmacology, 1999, 128, 1497-1504.	5.4	101
143	Chapter 16 The functions of ATP receptors in the synaptic transmission in the hippocampus. Progress in Brain Research, 1999, 120, 193-206.	1.4	28
144	ATP stimulation of Ca ²⁺ â€dependent plasminogen release from cultured microglia. British Journal of Pharmacology, 1998, 123, 1304-1310.	5.4	113

#	Article	IF	CITATIONS
145	Effects of a Novel Antihypertensive Drug, Cilnidipine, on Catecholamine Secretion From Differentiated PC12 Cells. Hypertension, 1998, 31, 1195-1199.	2.7	18
146	Inhibition by ATP of calcium oscillations in rat cultured hippocampal neurones. British Journal of Pharmacology, 1997, 122, 51-58.	5.4	69
147	Modulatory effect of plasminogen on NMDA-induced increase in intracellular free calcium concentration in rat cultured hippocampal neurons. Neuroscience Letters, 1994, 179, 87-90.	2.1	29
148	Potentiation by adenosine of ATPâ€evoked dopamine release via a pertussis toxinâ€sensitive mechanism in rat phaeochromocytoma PC12 cells. British Journal of Pharmacology, 1994, 112, 992-997.	5.4	27
149	THE VALUE OF ECHOGRAPHY AND ASPIRATION CYTOLOGY IN THE DIAGNOSIS OF THYROID CARCINOMA. The KITAKANTO Medical Journal, 1980, 30, 99-107.	0.0	0
150	ATP Receptors of Microglia Involved in Pain. Novartis Foundation Symposium, 0, , 263-274.	1.1	38