
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Side effects of amino acid supplements Physiological Research, 2022, , .	0.4	0
2	Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid. Nutrients, 2022, 14, 1987.	1.7	36
3	The Role of Skeletal Muscle in The Pathogenesis of Altered Concentrations of Branched-Chain Amino Acids (Valine, Leucine, and Isoleucine) in Liver Cirrhosis, Diabetes, and Other Diseases. Physiological Research, 2021, 70, 293-305.	0.4	34
4	Why Are Branched-Chain Amino Acids Increased in Starvation and Diabetes?. Nutrients, 2020, 12, 3087.	1.7	72
5	Effects of low and high doses of fenofibrate on protein, amino acid, and energy metabolism in rat. International Journal of Experimental Pathology, 2020, 101, 171-182.	0.6	7
6	Branched-Chain Amino Acids and Branched-Chain Keto Acids in Hyperammonemic States: Metabolism and as Supplements. Metabolites, 2020, 10, 324.	1.3	20
7	Dual Effects of Beta-Hydroxy-Beta-Methylbutyrate (HMB) on Amino Acid, Energy, and Protein Metabolism in the Liver and Muscles of Rats with Streptozotocin-Induced Type 1 Diabetes. Biomolecules, 2020, 10, 1475.	1.8	11
8	Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients, 2020, 12, 848.	1.7	202
9	Effects of Histidine Supplementation on Amino Acid Metabolism in Rats. Physiological Research, 2020, 69, 99-111.	0.4	15
10	Influence of Histidine Administration on Ammonia and Amino Acid Metabolism: A Review. Physiological Research, 2020, 69, 555-564.	0.4	13
11	Effects of betaâ€hydroxyâ€betaâ€methylbutyrate supplementation on skeletal muscle in healthy and cirrhotic rats. International Journal of Experimental Pathology, 2019, 100, 175-183.	0.6	8
12	Effects of histidine load on ammonia, amino acid, and adenine nucleotide concentrations in rats. Amino Acids, 2019, 51, 1667-1680.	1.2	8
13	Muscle wasting and branchedâ€chain amino acid, alphaâ€ketoglutarate, and <scp>ATP</scp> depletion in a rat model of liver cirrhosis. International Journal of Experimental Pathology, 2018, 99, 274-281.	0.6	18
14	Effects of branched-chain amino acids on muscles under hyperammonemic conditions. Journal of Physiology and Biochemistry, 2018, 74, 523-530.	1.3	13
15	Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutrition and Metabolism, 2018, 15, 33.	1.3	429
16	Effects of Beta-Hydroxy-Beta-Methylbutyrate in Partially Hepatectomized Rats. Physiological Research, 2018, 67, 741-751.	0.4	7
17	Betaâ€hydroxyâ€betaâ€methylbutyrate supplementation and skeletal muscle in healthy and muscleâ€wasting conditions. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 529-541.	2.9	159
18	Branched-chain amino acid supplementation in treatment of liver cirrhosis: Updated views on how to attenuate their harmful effects on cataplerosis and ammonia formation. Nutrition, 2017, 41, 80-85.	1.1	67

#	Article	lF	CITATIONS
19	Acute effects of phenylbutyrate on glutamine, branchedâ€chain amino acid and protein metabolism in skeletal muscles of rats. International Journal of Experimental Pathology, 2017, 98, 127-133.	0.6	12
20	Deproteinization is Necessary for the Accurate Determination of Ammonia Levels by Glutamate Dehydrogenase Assay in Blood Plasma From Subjects With Liver Injury. Laboratory Medicine, 2017, 48, 339-345.	0.8	5
21	Amino Acid Concentrations and Protein Metabolism of Two Types of Rat Skeletal Muscle in Postprandial State and After Brief Starvation. Physiological Research, 2017, 66, 959-967.	0.4	36
22	Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats. Nutrients, 2016, 8, 206.	1.7	27
23	Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutrition and Metabolism, 2016, 13, 12.	1.3	28
24	Phenylbutyrate exerts adverse effects on liver regeneration and amino acid concentrations in partially hepatectomized rats. International Journal of Experimental Pathology, 2016, 97, 278-284.	0.6	8
25	IL-1 receptor blockade alleviates endotoxin-mediated impairment of renal drug excretory functions in rats. American Journal of Physiology - Renal Physiology, 2015, 308, F388-F399.	1.3	9
26	Ammonia and amino acid profiles in liver cirrhosis: Effects of variables leading to hepatic encephalopathy. Nutrition, 2015, 31, 14-20.	1.1	95
27	Enhanced Glutamine Availability Exerts Different Effects on Protein and Amino Acid Metabolism in Skeletal Muscle From Healthy and Septic Rats. Journal of Parenteral and Enteral Nutrition, 2015, 39, 847-854.	1.3	14
28	Single- and multiple-dose pharmacokinetics of arginase inhibitor Nω-hydroxy-nor-L-arginine, andâ€⁻its effect on plasma amino acids concentrations in Wistar rats. General Physiology and Biophysics, 2014, 33, 189-198.	0.4	14
29	Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy–therapeutic perspectives. Metabolic Brain Disease, 2014, 29, 9-17.	1.4	60
30	Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Amino Acids, 2014, 46, 1377-1384.	1.2	30
31	Branched-chain amino acids and ammonia metabolism in liver disease: Therapeutic implications. Nutrition, 2013, 29, 1186-1191.	1.1	85
32	Side Effects of Longâ€Term Glutamine Supplementation. Journal of Parenteral and Enteral Nutrition, 2013, 37, 607-616.	1.3	44
33	The dose-dependent effects of endotoxin on protein metabolism in two types of rat skeletal muscle. Journal of Physiology and Biochemistry, 2012, 68, 385-395.	1.3	17
34	Muscle wasting in animal models of severe illness. International Journal of Experimental Pathology, 2012, 93, 157-171.	0.6	49
35	Alterations in protein metabolism and amino acid concentrations in rats fed by a high-protein (casein-enriched) diet – Effect of starvation. Food and Chemical Toxicology, 2011, 49, 3336-3342.	1.8	27
36	Adverse effects of chronic intake of glutamine-supplemented diet on amino acid concentrations and protein metabolism in rat: Effect of short-term starvation. European E-journal of Clinical Nutrition and Metabolism, 2011, 6, e190-e196.	0.4	8

#	Article	IF	CITATIONS
37	Branched-chain Amino Acid Oxidation in Skeletal Muscle – Physiological and Clinical Importance of its Modulation by Reactant Availability. Current Nutrition and Food Science, 2011, 7, 50-56.	0.3	7
38	Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle. Amino Acids, 2011, 40, 575-584.	1.2	66
39	Effects of β-hydroxy-β-methylbutyrate treatment in different types of skeletal muscle of intact and septic rats. Journal of Physiology and Biochemistry, 2010, 66, 311-319.	1.3	81
40	Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition, 2010, 26, 482-490.	1.1	155
41	The effect of new proteasome inhibitors, belactosin A and C, on protein metabolism in isolated rat skeletal muscle. Journal of Physiology and Biochemistry, 2009, 65, 137-146.	1.3	12
42	Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues. Food and Chemical Toxicology, 2009, 47, 255-259.	1.8	75
43	Protein metabolism in slow―and fastâ€ŧwitch skeletal muscle during turpentineâ€induced inflammation. International Journal of Experimental Pathology, 2008, 89, 64-71.	0.6	30
44	Proteasome inhibitor MG-132 enhances whole-body protein turnover in rat. Biochemical and Biophysical Research Communications, 2006, 345, 38-42.	1.0	11
45	Modulation of inflammatory response in sepsis by proteasome inhibition. International Journal of Experimental Pathology, 2006, 87, 369-372.	0.6	26
46	Simultaneous Infusion of Glutamine and Branchedâ€Chain Amino Acids (BCAA) to Septic Rats Does Not Have More Favorable Effect on Protein Synthesis in Muscle, Liver, and Small Intestine Than Separate Infusions. Journal of Parenteral and Enteral Nutrition, 2006, 30, 467-473.	1.3	11
47	Aspects of Protein and Amino Acid Metabolism in a Model of Severe Glutamine Deficiency in Sepsis. Annals of Nutrition and Metabolism, 2006, 50, 361-367.	1.0	14
48	Direct effects of proteasome inhibitor AdaAhx3L3VS on protein and amino acid metabolism in rat skeletal muscle. Physiological Research, 2005, 54, 541-7.	0.4	3
49	Protein metabolism in guanethidine-treated rats. International Journal of Experimental Pathology, 2004, 85, 257-264.	0.6	1
50	Effects of proteasome inhibitors MG132, ZL3VS and AdaAhx3L3VS on protein metabolism in septic rats. International Journal of Experimental Pathology, 2004, 85, 365-371.	0.6	33
51	Effect of acute acidosis on protein and amino acid metabolism in rats. Clinical Nutrition, 2003, 22, 437-443.	2.3	26
52	Acute effects of acidosis on protein and amino acid metabolism in perfused rat liver. International Journal of Experimental Pathology, 2003, 84, 185-190.	0.6	10
53	Acute effects of decreased glutamine supply on protein and amino acid metabolism in hepatic tissue: a study using isolated perfused rat liver. Metabolism: Clinical and Experimental, 2003, 52, 1062-1067.	1.5	10
54	Effect of decreased glutamine supply on protein and amino acid metabolism in hepatic tissue. A study using isolated perfused rat liver. Journal of Hepatology, 2003, 38, 194.	1.8	0

MILAN HOLECEK

#	Article	IF	CITATIONS
55	Relation between glutamine, branched-chain amino acids, and protein metabolism 1 1Guest Editor: Gil Hardy, PhD. Nutrition, 2002, 18, 130-133.	1.1	120
56	Effect of alanyl-glutamine on leucine and protein metabolism in irradiated rats. Amino Acids, 2002, 22, 95-108.	1.2	21
57	Leucine and protein metabolism in rats with chronic renal insufficiency. Experimental and Toxicologic Pathology, 2001, 53, 71-76.	2.1	14
58	The BCAA–BCKA cycle: its relation to alanine and glutamine synthesis and protein balance. Nutrition, 2001, 17, 70.	1.1	39
59	Effect of starvation on branched-chain alpha-keto acid dehydrogenase activity in rat heart and skeletal muscle. Physiological Research, 2001, 50, 19-24.	0.4	13
60	Metabolism of branched-chain amino acids in starved rats: the role of hepatic tissue. Physiological Research, 2001, 50, 25-33.	0.4	33
61	Evaluation of the irritant capacity of decyl polyglucoside. International Journal of Cosmetic Science, 2000, 22, 73-81.	1.2	5
62	Effect of Alanylâ€Glutamine on Leucine and Protein Metabolism in Endotoxemic Rats. Journal of Parenteral and Enteral Nutrition, 2000, 24, 215-222.	1.3	23
63	Influence of Buthionine Sulfoximine, S-Adenosylmethionine and Glutathione on Liver Regeneration Following Partial Hepatectomy. Arzneimittelforschung, 2000, 50, 1093-1098.	0.5	6
64	Effect of hyperammonemia on leucine and protein metabolism in rats. Metabolism: Clinical and Experimental, 2000, 49, 1330-1334.	1.5	45
65	Leucine and protein metabolism after bilateral nephrectomy in rats: the role of hepatic tissue. Research in Experimental Medicine, 2000, 200, 53-65.	0.7	8
66	Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet. Wiener Klinische Wochenschrift, 2000, 112, 876-81.	1.0	6
67	Plasma amino acid levels after carbon tetrachloride induced acute liver damage. A dose-response and time-response study in rats. Amino Acids, 1999, 16, 1-11.	1.2	25
68	Nutritional modulation of liver regeneration by carbohydrates, lipids, and amino acids: a review. Nutrition, 1999, 15, 784-788.	1.1	64
69	Leucine metabolism in rat liver after a bolus injection of endotoxin. Metabolism: Clinical and Experimental, 1998, 47, 681-685.	1.5	18
70	Leucine metabolism in partially hepatectomized rats. Journal of Hepatology, 1997, 26, 1141-1147.	1.8	4
71	Leucine metabolism in TNF-α- and endotoxin-treated rats: contribution of hepatic tissue. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E1052-E1058.	1.8	28
72	Leucine metabolism in rats with cirrhosis. Journal of Hepatology, 1996, 24, 209-216.	1.8	31

#	Article	IF	CITATIONS
73	Leucine metabolism in fasted and tumor necrosis factor-treated rats. Clinical Nutrition, 1996, 15, 91-93.	2.3	24
74	Plasma amino acids in four models of experimental liver injury in rats. Amino Acids, 1996, 10, 229-241.	1.2	39
75	Protein Metabolism in Cirrhotic Rats: Effect of Dietary Restriction. Annals of Nutrition and Metabolism, 1995, 39, 346-354.	1.0	15
76	Protein metabolism in specific tissues of endotoxin-treated rats: effect of nutritional status. Physiological Research, 1995, 44, 399-406.	0.4	9
77	Effects of essential phospholipids on the amino acid metabolism in whole body irradiated rats. Arzneimittelforschung, 1994, 44, 1054-9.	0.5	0
78	Effect of polyunsaturated phosphatidylcholine on liver regeneration onset after hepatectomy in the rat. Arzneimittelforschung, 1992, 42, 337-9.	0.5	3
79	Effect of glucose and branched chain amino acid (BCAA) infusion on onset of liver regeneration and plasma amino acid pattern in partially hepatectomized rats. Journal of Hepatology, 1991, 13, 14-20.	1.8	44
80	Acceleration of the onset of liver regeneration by carnitine in partially hepatectomized rats. Physiologia Bohemoslovaca, 1989, 38, 503-8.	0.1	3
81	Effect of dietary protein content on liver morphology in acute galactosamine poisoning. Bulletin of Experimental Biology and Medicine, 1988, 105, 127-129.	0.3	0
82	Effect of a low protein diet on restoration of the rat liver parenchyma after carbon tetrachloride poisoning. Bulletin of Experimental Biology and Medicine, 1988, 105, 397-400.	0.3	0
83	Different effects of glucose and Intralipid on the onset of liver regeneration in the early period after partial hepatectomy in the rat. Experimental Pathology, 1988, 33, 257-260.	0.5	15
84	Effect of the infusion of glucose, itralipid and nutramin on the initiation of rat liver regeneration after partial hepatectomy. Physiologia Bohemoslovaca, 1988, 37, 467-73.	0.1	8
85	Different effects of glucose and intralipid on the onset of liver regeneration in the early period after partial hepatectomy in the rat. Experimental Pathology, 1988, 33, 257-60.	0.5	2
86	Structural changes in the liver parenchyma of rats during long-term feeding on diets differing in protein content. Bulletin of Experimental Biology and Medicine, 1986, 101, 607-610.	0.3	1
87	Effect of branched chain amino acids on liver regeneration after partial hepatectomy. Physiologia Bohemoslovaca, 1985, 34, 359-66.	0.1	5
88	Effect of glucose, fructose, sorbitol and amino acid solutions employed in clinical medicine on the development of liver regeneration after partial hepatectomy. Physiologia Bohemoslovaca, 1985, 34, 395-402.	0.1	5
89	Side Effects of Amino Acid Supplements. Physiological Research, 0, , 29-45.	0.4	13