Valier Galy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365346/publications.pdf Version: 2024-02-01

VALIED CALV

#	Article	IF	CITATIONS
1	Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 2007, 450, 407-410.	27.8	562
2	Global carbon export from the terrestrial biosphere controlled by erosion. Nature, 2015, 521, 204-207.	27.8	394
3	Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 2019, 570, 228-231.	27.8	354
4	Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 2011, 302, 107-120.	4.4	296
5	High rates of organic carbon burial in fjord sediments globally. Nature Geoscience, 2015, 8, 450-453.	12.9	295
6	Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochimica Et Cosmochimica Acta, 2012, 84, 410-432.	3.9	234
7	Mineralogical and chemical variability of fluvial sediments1. Bedload sand (Ganga–Brahmaputra,) Tj ETQq1 1 ().784314 4.4	rgBT /Overlo $_{230}^{230}$
8	Recycling of Graphite During Himalayan Erosion: A Geological Stabilization of Carbon in the Crust. Science, 2008, 322, 943-945.	12.6	205
9	Loading and fate of particulate organic carbon from the Himalaya to the Ganga–Brahmaputra delta. Geochimica Et Cosmochimica Acta, 2008, 72, 1767-1787.	3.9	187
10	Increasing chemical weathering in the Himalayan system since the Last Glacial Maximum. Earth and Planetary Science Letters, 2013, 365, 243-252.	4.4	185
11	Centers of organic carbon burial and oxidation at the land-ocean interface. Organic Geochemistry, 2018, 115, 138-155.	1.8	184
12	Protracted storage of biospheric carbon in the Ganges–Brahmaputra basin. Nature Geoscience, 2011, 4, 843-847.	12.9	150
13	Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature, 2015, 524, 84-87.	27.8	141
14	Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion. Earth and Planetary Science Letters, 2014, 401, 359-372.	4.4	137
15	A Rouse-based method to integrate the chemical composition of river sediments: Application to the Ganga basin. Journal of Geophysical Research, 2011, 116, .	3.3	132
16	Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology, 2010, 38, 255-258.	4.4	130
17	Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles. Geochimica Et Cosmochimica Acta, 2014, 133, 280-298.	3.9	122
18	C4 plants decline in the Himalayan basin since the Last Glacial Maximum. Quaternary Science Reviews, 2008, 27, 1396-1409.	3.0	119

#	Article	IF	CITATIONS
19	Global-scale evidence for the refractory nature of riverine black carbon. Nature Geoscience, 2018, 11, 584-588.	12.9	111
20	The provenance of vegetation and environmental signatures encoded in vascular plant biomarkers carried by the Ganges–Brahmaputra rivers. Earth and Planetary Science Letters, 2011, 304, 1-12.	4.4	107
21	The acid and alkalinity budgets of weathering in the Andes–Amazon system: Insights into the erosional control of global biogeochemical cycles. Earth and Planetary Science Letters, 2016, 450, 381-391.	4.4	103
22	Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science, 2018, 360, 209-212.	12.6	97
23	Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years. Nature Geoscience, 2014, 7, 513-517.	12.9	80
24	Sr–Nd–Os evidence for a stable erosion regime in the Himalaya during the past 12Myr. Earth and Planetary Science Letters, 2010, 290, 474-480.	4.4	79
25	An interlaboratory study of TEX ₈₆ and BIT analysis of sediments, extracts, and standard mixtures. Geochemistry, Geophysics, Geosystems, 2013, 14, 5263-5285.	2.5	76
26	Climate oscillations reflected within the microbiome of Arabian Sea sediments. Scientific Reports, 2017, 7, 6040.	3.3	74
27	Direct measurement of riverine particulate organic carbon age structure. Geophysical Research Letters, 2012, 39, .	4.0	67
28	Leaf wax biomarkers in transit record river catchment composition. Geophysical Research Letters, 2014, 41, 6420-6427.	4.0	66
29	Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	64
30	Dual isotope evidence for sedimentary integration of plant wax biomarkers across an Andes-Amazon elevation transect. Geochimica Et Cosmochimica Acta, 2018, 242, 64-81.	3.9	53
31	Determination of Total Organic Carbon Content and δ ¹³ C in Carbonateâ€Rich Detrital Sediments. Geostandards and Geoanalytical Research, 2007, 31, 199-207.	1.9	52
32	Multiple plant-wax compounds record differential sources and ecosystem structure in large river catchments. Geochimica Et Cosmochimica Acta, 2016, 184, 20-40.	3.9	49
33	Millennial soil retention of terrestrial organic matter deposited in the Bengal Fan. Scientific Reports, 2018, 8, 11997.	3.3	48
34	Cosmogenic 3He production rate in the high tropical Andes (3800 m, 20°S): Implications for the local last glacial maximum. Earth and Planetary Science Letters, 2013, 377-378, 260-275.	4.4	45
35	Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation. Earth Surface Dynamics, 2017, 5, 781-789.	2.4	45
36	Carbon dioxide emissions by rock organic carbon oxidation and the net geochemical carbon budget of the Mackenzie River Basin. Numerische Mathematik, 2019, 319, 473-499.	1.4	45

#	Article	IF	CITATIONS
37	Millennial-scale hydroclimate control of tropical soil carbon storage. Nature, 2020, 581, 63-66.	27.8	44
38	Soothsaying DOM: A Current Perspective on the Future of Oceanic Dissolved Organic Carbon. Frontiers in Marine Science, 2020, 7, .	2.5	44
39	A Note on Reporting of Reservoir ¹⁴ C Disequilibria and Age Offsets. Radiocarbon, 2016, 58, 205-211.	1.8	43
40	Sustained wood burial in the Bengal Fan over the last 19 My. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22518-22525.	7.1	43
41	238U–234U–230Th disequilibria and timescale of sedimentary transfers in rivers: Clues from the Gangetic plain rivers. Journal of Geochemical Exploration, 2006, 88, 373-375.	3.2	41
42	Post-glacial climate forcing of surface processes in the Ganges–Brahmaputra river basin and implications for carbon sequestration. Earth and Planetary Science Letters, 2017, 478, 89-101.	4.4	41
43	Monsoon control over erosion patterns in the Western Himalaya: possible feed-back into the tectonic evolution. Geological Society Special Publication, 2010, 342, 185-218.	1.3	40
44	Source to sink: Evolution of lignin composition in the Madre de Dios River system with connection to the Amazon basin and offshore. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1316-1338.	3.0	39
45	Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation. Biogeosciences, 2017, 14, 5099-5114.	3.3	36
46	Neoglacial climate anomalies and the Harappan metamorphosis. Climate of the Past, 2018, 14, 1669-1686.	3.4	36
47	C4 plant expansion in the Ganga Plain during the last glacial cycle: Insights from isotopic composition of vascular plant biomarkers. Organic Geochemistry, 2014, 67, 58-71.	1.8	33
48	Assessing the Blank Carbon Contribution, Isotope Mass Balance, and Kinetic Isotope Fractionation of the Ramped Pyrolysis/Oxidation Instrument at NOSAMS. Radiocarbon, 2017, 59, 179-193.	1.8	33
49	A 43 kyr record of protist communities and their response to oxygen minimum zone variability in the Northeastern Arabian Sea. Earth and Planetary Science Letters, 2018, 496, 248-256.	4.4	31
50	Late Quaternary environmental change in the interior South American tropics: new insight from leaf wax stable isotopes. Earth and Planetary Science Letters, 2016, 438, 75-85.	4.4	30
51	Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age. Chemical Geology, 2017, 466, 454-465.	3.3	28
52	Glacier meltwater and monsoon precipitation drive Upper Ganges Basin dissolved organic matter composition. Geochimica Et Cosmochimica Acta, 2019, 244, 216-228.	3.9	28
53	Miocene C ₄ Grassland Expansion as Recorded by the Indus Fan. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003856.	2.9	28
54	Significance of Perylene for Source Allocation of Terrigenous Organic Matter in Aquatic Sediments. Environmental Science & Technology, 2019, 53, 8244-8251.	10.0	25

#	Article	IF	CITATIONS
55	Seasonal hydrology drives rapid shifts in the flux and composition of dissolved and particulate organic carbon and major and trace ions in the Fraser River, Canada. Biogeosciences, 2015, 12, 5597-5618.	3.3	24
56	Analytical and Computational Advances, Opportunities, and Challenges in Marine Organic Biogeochemistry in an Era of "Omics― Frontiers in Marine Science, 2020, 7, .	2.5	24
57	Temporal constraints on lateral organic matter transport along a coastal mud belt. Organic Geochemistry, 2019, 128, 86-93.	1.8	20
58	Paleoreconstruction of organic carbon inputs to an oxbow lake in the Mississippi River watershed: Effects of dam construction and land use change on regional inputs. Geophysical Research Letters, 2015, 42, 7983-7991.	4.0	19
59	From Andes to Amazon: Assessing Branched Tetraether Lipids as Tracers for Soil Organic Carbon in the Madre de Dios River System. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005270.	3.0	17
60	Persistence of old soil carbon under changing climate: The role of mineral-organic matter interactions. Chemical Geology, 2022, 587, 120629.	3.3	17
61	Terrestrial organic carbon age and reactivity in the Yellow River fueling efficient preservation in marine sediments. Earth and Planetary Science Letters, 2022, 585, 117515.	4.4	17
62	The Pulse of the Amazon: Fluxes of Dissolved Organic Carbon, Nutrients, and Ions From the World's Largest River. Global Biogeochemical Cycles, 2021, 35, e2020GB006895.	4.9	16
63	Limited Presence of Permafrost Dissolved Organic Matter in the Kolyma River, Siberia Revealed by Ramped Oxidation. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005977.	3.0	16
64	Thermal oxidation of carbon in organic matter rich volcanic soils: insights into SOC age differentiation and mineral stabilization. Biogeochemistry, 2019, 144, 291-304.	3.5	15
65	Arctic Deltaic Lake Sediments As Recorders of Fluvial Organic Matter Deposition. Frontiers in Earth Science, 2016, 4, .	1.8	12
66	Biomass-Derived Provenance Dominates Glacial Surface Organic Carbon in the Western Himalaya. Environmental Science & Technology, 2020, 54, 8612-8621.	10.0	11
67	Controls on the age of plant waxes in marine sediments – A global synthesis. Organic Geochemistry, 2021, 157, 104259.	1.8	11
68	Controls on short-term dissolved 87Sr/86Sr variations in large rivers: Evidence from the Ganga–Brahmaputra. Earth and Planetary Science Letters, 2021, 566, 116958.	4.4	9
69	Using Stable Carbon Isotopes to Quantify Radiocarbon Reservoir Age Offsets in the Coastal Black Sea. Radiocarbon, 2019, 61, 309-318.	1.8	7
70	Coal fly ash is a major carbon flux in the Chang Jiang (Yangtze River) basin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
71	Turbidity Currents Can Dictate Organic Carbon Fluxes Across Riverâ€Fed Fjords: An Example From Bute Inlet (BC, Canada). Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	7
72	Prominent bacterial heterotrophy and sources of ¹³ C-depleted fatty acids to the interior Canada Basin. Biogeosciences, 2013, 10, 7065-7080.	3.3	5

#	Article	IF	CITATIONS
73	The effect of sample drying temperature on marine particulate organic carbon composition. Limnology and Oceanography: Methods, 2018, 16, 286-298.	2.0	3
74	Organic Carbon Cycling During Himalayan Erosion: Processes, Fluxes and Consequences for the Global Carbon Cycle. , 2010, , 163-181.		3
75	Isotopic evidence for sources of dissolved carbon and the role of organic matter respiration in the Fraser River basin, Canada. Biogeochemistry, 0, , .	3.5	3
76	Reply to comment by Thomas M. Blattmann on "Carbon dioxide emissions by rock organic carbon oxidation and the next geochemical carbon budget of the Mackenzie River Basinâ€, v. 319, n. 6, p. 473–499 Numerische Mathematik, 2019, 319, 905-906.	1.4	0
77	SHORT COMMUNICATION: Massive Erosion in Monsoonal Central India Linked to Late Holocene Landcover Degradation. , 0, , .		Ο
78	Heliumâ€flushed sheathed nickel tube reactor for continuous flow oxygen stable isotope compoundâ€specific analysis. Rapid Communications in Mass Spectrometry, 2022, 36, e9252.	1.5	0