Glenn P A Yap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365136/publications.pdf

Version: 2024-02-01

117453 168136 3,812 147 34 53 citations h-index g-index papers 159 159 159 4121 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Palladium Aryl Sulfonate Phosphine Catalysts for the Copolymerization of Acrylates with Ethene. Macromolecular Rapid Communications, 2007, 28, 2033-2038.	2.0	160
2	Intramolecular C?H Activation by an Open-Shell Cobalt(III) Imido Complex. Angewandte Chemie - International Edition, 2005, 44, 1508-1510.	7.2	149
3	Expanding the Ligand Framework Diversity of Carbodicarbenes and Direct Detection of Boron Activation in the Methylation of Amines with CO ₂ . Angewandte Chemie - International Edition, 2015, 54, 15207-15212.	7. 2	149
4	Binding and Activation of Small Molecules by Three-Coordinate Cr(I). Journal of the American Chemical Society, 2007, 129, 8090-8091.	6.6	126
5	Catalytic Enantioselective Nazarov Cyclization: Construction of Vicinal Allâ€Carbonâ€Atom Quaternary Stereocenters. Angewandte Chemie - International Edition, 2014, 53, 6180-6183.	7.2	111
6	A Tale of Two Isomers: A Stable Phenyl Hydride and a Highâ \in Spin (<i>S</i> =3) Benzene Complex of Chromium. Angewandte Chemie - International Edition, 2007, 46, 6692-6694.	7.2	84
7	Methane Storage in Paddlewheel-Based Porous Coordination Cages. Journal of the American Chemical Society, 2018, 140, 11153-11157.	6.6	84
8	Insights into Thiol–Aromatic Interactions: A Stereoelectronic Basis for S–H/π Interactions. Journal of the American Chemical Society, 2017, 139, 1842-1855.	6.6	76
9	New Cu(II) complexes with polydentate chelating Schiff base ligands: Synthesis, structures, characterisations and biochemical activity studies. Structural Chemistry, 2007, 18, 33-41.	1.0	74
10	Understanding Gas Storage in Cuboctahedral Porous Coordination Cages. Journal of the American Chemical Society, 2019, 141, 12128-12138.	6.6	73
11	Hydrotris(indazolyl)borates:Â Homoscorpionates with Tunable Regiochemistry. Inorganic Chemistry, 1997, 36, 5097-5103.	1.9	72
12	Paramagnetic Alkyl, Hydride, and Alkene Complexes of the Tpt-Bu, MeCo Moiety. Organometallics, 1999, 18, 300-305.	1.1	69
13	Synthesis, Characterization, and Electronic Structure of Diimine Complexes of Chromium. Inorganic Chemistry, 2008, 47, 5293-5303.	1.9	63
14	Oneâ€Pot Tandem Photoredox and Crossâ€Coupling Catalysis with a Single Palladium Carbodicarbene Complex. Angewandte Chemie - International Edition, 2018, 57, 4622-4626.	7.2	62
15	A Charged Coordination Cage-Based Porous Salt. Journal of the American Chemical Society, 2020, 142, 9594-9598.	6.6	60
16	Carbodicarbenes: Unexpected π-Accepting Ability during Reactivity with Small Molecules. Journal of the American Chemical Society, 2017, 139, 12830-12836.	6.6	57
17	Novel Binuclear Cobalt Dioxygen Complex—A Step on the Path to Dioxygen Activation. Angewandte Chemie International Edition in English, 1995, 34, 2051-2052.	4.4	56
18	Structural Consequences of Strong and Weak Interactions to Binary Benzoic Acid/Bipyridine Supramolecular Assemblies. Crystal Growth and Design, 2005, 5, 727-736.	1.4	56

#	Article	IF	Citations
19	Monovalent Iron in a Sulfur-Rich Environment. Inorganic Chemistry, 2008, 47, 1889-1891.	1.9	49
20	A Tetrapyrrole Macrocycle Displaying a Multielectron Redox Chemistry and Tunable Absorbance Profile. Journal of Physical Chemistry C, 2012, 116, 16918-16924.	1.5	49
21	Enantioselective Copper-Catalyzed Alkynylation of Benzopyranyl Oxocarbenium Ions. Journal of Organic Chemistry, 2015, 80, 4003-4016.	1.7	48
22	A Family of Fourâ€Coordinate Iron(II) Complexes Bearing the Sterically Hindered Tris(pyrazolyl)borato Ligand Tp ^{<i>t</i>Bu,Me} . Chemistry - A European Journal, 2011, 17, 1310-1318.	1.7	47
23	Deposition of Copper by Plasma-Enhanced Atomic Layer Deposition Using a Novel N-Heterocyclic Carbene Precursor. Chemistry of Materials, 2013, 25, 1132-1138.	3.2	46
24	[(Tp ^{<i>t</i>Bu, Me})CrR]: A New Class of Mononuclear, Coordinatively Unsaturated Chromium(II) Alkyls with <i>cis</i> êĐivacant Octahedral Structure. Chemistry - A European Journal, 1997, 3, 1668-1674.	1.7	43
25	Ligand-Based Phase Control in Porous Molecular Assemblies. ACS Applied Materials & Discrete Samp; Interfaces, 2018, 10, 11420-11424.	4.0	41
26	Reactivities of a Bis(alkylidene) Complex. Synthesis of a Silyl Bis(alkylidyne) Complex and a Reaction Cycle among Symmetric Bis(alkylidyne), Bis(alkylidene), and Nonsymmetric Bis(alkylidyne) Compounds. Organometallics, 1998, 17, 4597-4606.	1.1	38
27	Enantioselective, Copper-Catalyzed Alkynylation of Ketimines To Deliver Isoquinolines with α-Diaryl Tetrasubstituted Stereocenters. Organic Letters, 2016, 18, 6006-6009.	2.4	38
28	Ligand-Based Phase Control in Porous Zirconium Coordination Cages. Chemistry of Materials, 2020, 32, 5872-5878.	3.2	37
29	Reduction of CO2 using a rhenium bipyridine complex containing ancillary BODIPY moieties. Catalysis Today, 2014, 225, 149-157.	2.2	36
30	The Zirconium Benzyl Mediated Câ^'N Bond Cleavage of an Amino-Linked N-Heterocyclic Carbene. Organometallics, 2010, 29, 516-518.	1.1	35
31	Thermal versus Photochemical Reductive Elimination of Aryl Chlorides from NHC–Gold Complexes. Organometallics, 2013, 32, 5026-5029.	1.1	35
32	Surfactant Directed Growth of Gold Metal Nanoplates by Chemical Vapor Deposition. Chemistry of Materials, 2015, 27, 6116-6124.	3.2	35
33	Tuning the Porosity, Solubility, and Gas-Storage Properties of Cuboctahedral Coordination Cages via Amide or Ester Functionalization. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24913-24919.	4.0	34
34	Coordination Chemistry of Homoscorpionate Ligands with 3-Cyclopropyl Substituents. Inorganic Chemistry, 1997, 36, 6261-6265.	1.9	33
35	Mechanism-based design of labile precursors for chromium(i) chemistry. Chemical Communications, 2015, 51, 15402-15405.	2.2	33
36	Synthesis and Isolation of an Acyclic Tridentate Bis(pyridine)carbodicarbene and Studies on Its Structural Implications and Reactivities. Angewandte Chemie, 2015, 127, 2450-2454.	1.6	33

#	Article	IF	Citations
37	Subtle Reactivities of Boron and Aluminum Complexes with Amino-Linked N-Heterocyclic Carbene Ligation. Organometallics, 2012, 31, 637-643.	1.1	30
38	Chemistry of Boratophosphazenes: Synthesis of Borazine-Phosphazene Hybrid Cations, and New Inorganic Heterocycles by Skeletal Substitution Reactions. Chemistry - A European Journal, 1998, 4, 1489-1503.	1.7	29
39	Structural, Spectroscopic, and Electrochemical Properties of a Series of High-Spin Thiolatonickel(II) Complexes. Inorganic Chemistry, 2007, 46, 11308-11315.	1.9	28
40	Scorpionates of the "Tetrahedral Enforcer―Variety as Ancillary Ligands for Dinitrogen Complexes of First Row Transition Metals (Cr–Co). European Journal of Inorganic Chemistry, 2016, 2016, 2349-2356.	1.0	28
41	Kinetic and Thermodynamic Study of Synâ^'Anti Isomerization of Nickel Complexes Bearing Amino-Linked N-Heterocyclic Carbene Ligands: The Effect of the Pendant Arm of the NHC. Organometallics, 2009, 28, 4316-4323.	1.1	27
42	Synthesis and Catalytic Properties of Dirhodium Paddlewheel Complexes with Tethered, Axially Coordinating Thioether Ligands. Inorganic Chemistry, 2019, 58, 1728-1732.	1.9	27
43	A High-Spin Organometallic Feâ^'S Compound: Structural and Mol^ssbauer Spectroscopic Studies of [Phenyltris((tert-butylthio)methyl)borate]Fe(Me). Inorganic Chemistry, 2009, 48, 8317-8324.	1.9	26
44	Electrochemical, Spectroscopic, and ¹ O ₂ Sensitization Characteristics of Synthetically Accessible Linear Tetrapyrrole Complexes of Palladium and Platinum. Inorganic Chemistry, 2017, 56, 12703-12711.	1.9	25
45	Design and Synthesis of Porous Nickel(II) and Cobalt(II) Cages. Inorganic Chemistry, 2018, 57, 11847-11850.	1.9	25
46	¹⁹ F Magic Angle Spinning NMR Spectroscopy and Density Functional Theory Calculations of Fluorosubstituted Tryptophans: Integrating Experiment and Theory for Accurate Determination of Chemical Shift Tensors. Journal of Physical Chemistry B, 2018, 122, 6148-6155.	1.2	25
47	Elaboration of Porous Salts. Journal of the American Chemical Society, 2021, 143, 14956-14961.	6.6	25
48	Zirconium Complexes Supported by Imidazolones: Synthesis, Characterization, and Application of Precatalysts for the Hydroamination of Aminoalkenes. Organometallics, 2010, 29, 3357-3361.	1.1	24
49	On-surface cross-coupling methods for the construction of modified electrode assemblies with tailored morphologies. Chemical Science, 2013, 4, 437-443.	3.7	24
50	Study of Monomeric Copper Complexes Supported by <i>N</i> Heterocyclic and Acyclic Diamino Carbenes. Organometallics, 2017, 36, 2800-2810.	1.1	24
51	Structure and Reactivity of Chromium(VI) Alkylidenes. Journal of the American Chemical Society, 2018, 140, 7088-7091.	6.6	24
52	Dissection of Alkylpyridinium Structures to Understand Deamination Reactions. ACS Catalysis, 2021, 11, 8456-8466.	5 . 5	24
53	Five-coordinate M ^{II} -semiquinonate (M = Fe, Mn, Co) complexes: reactivity models of the catechol dioxygenases. Chemical Communications, 2014, 50, 5871-5873.	2.2	23
54	Electronic and Steric Control of nâ†'ï∈* Interactions: Stabilization of the αâ€Helix Conformation without a Hydrogen Bond. ChemBioChem, 2019, 20, 963-967.	1.3	23

#	Article	IF	Citations
55	High-Spin Organocobalt(II) Complexes in a Thioether Coordination Environment. Organometallics, 2007, 26, 971-979.	1.1	22
56	Factors Controlling the Spectroscopic Properties and Supramolecular Chemistry of an Electron Deficient 5,5-Dimethylphlorin Architecture. Journal of Physical Chemistry C, 2014, 118, 14124-14132.	1.5	22
57	A Bench-Stable, Single-Component Precatalyst for Silyl–Heck Reactions. Organic Letters, 2017, 19, 5641-5644.	2.4	22
58	Expedient route to volatile zirconium metal-organic chemical vapor deposition precursors using amide synthons and implementation in yttria-stabilized zirconia film growth. Journal of Materials Research, 1999, 14, 12-15.	1.2	21
59	Electrochemical, Spectroscopic, and $\langle \sup 1 \langle \sup > 0 \langle \sup > 2 \langle \sup > Sensitization Characteristics of 10,10-Dimethylbiladiene Complexes of Zinc and Copper. Journal of Physical Chemistry A, 2014, 118, 10639-10648.$	1.1	21
60	Strong and Weak Hydrogen-Bonding Interactions in the Structures ofN,N ,N   -Trisubstituted Guanidinium Chlorides and Bromides. Crystal Growth and Design, 2005, 5, 1881-1888.	1.4	20
61	Catalytic Enantioselective Nazarov Cyclization. European Journal of Organic Chemistry, 2017, 2017, 6067-6076.	1.2	20
62	Design and synthesis of capped-paddlewheel-based porous coordination cages. Chemical Communications, 2019, 55, 9527-9530.	2.2	19
63	Spectroscopic and ¹ O ₂ Sensitization Characteristics of a Series of Isomeric Re(bpy)(CO) ₃ Cl Complexes Bearing Pendant BODIPY Chromophores. Inorganic Chemistry, 2019, 58, 5042-5050.	1.9	19
64	Structure and redox tuning of gas adsorption properties in calixarene-supported Fe(<scp>ii</scp>)-based porous cages. Chemical Science, 2020, 11, 5273-5279.	3.7	19
65	Synthesis and characterization of poly(pyrazolyl)borate tantalum amide complexes and their reactivities toward oxygen. Science in China Series B: Chemistry, 2009, 52, 1583-1589.	0.8	18
66	Two-Way Street Transformation of Boronium and Borane Complexes Facilitated by Amino-Linked N-Heterocyclic Carbene. Organometallics, 2010, 29, 4004-4006.	1.1	18
67	pH-Driven Mechanistic Switching from Electron Transfer to Energy Transfer between [Ru(bpy) ₃] ²⁺ and Ferrocene Derivatives. Journal of the American Chemical Society, 2018, 140, 10169-10178.	6.6	18
68	Transformation of <i>N</i> , <i>N</i> -Dimethylaniline <i>N</i> -Oxides into Diverse Tetrahydroquinoline Scaffolds via Formal Povarov Reactions. Organic Letters, 2018, 20, 5406-5409.	2.4	18
69	Synthesis and Characterization of an Isoreticular Family of Calixarene-Capped Porous Coordination Cages. Inorganic Chemistry, 2021, 60, 5607-5616.	1.9	18
70	Synergistic Catalysis by Brønsted Acid/Carbodicarbene Mimicking Frustrated Lewis Pairâ€Like Reactivity. Angewandte Chemie - International Edition, 2021, 60, 19949-19956.	7.2	18
71	Synthesis of indenyl ruthenium triazolato complexes by [3 + 2] cycloaddition of activated nitrile and		

#	Article	IF	CITATIONS
73	Mechanochemical Synthesis of Porous Molecular Assemblies. Chemistry of Materials, 2018, 30, 3975-3978.	3.2	17
74	Measurement of Accurate Interfluorine Distances in Crystalline Organic Solids: A High-Frequency Magic Angle Spinning NMR Approach. Journal of Physical Chemistry B, 2019, 123, 10680-10690.	1.2	17
75	Synthesis of Carbophosphinocarbene and Their Donating Ability: Expansion of the Carbone Class. Organometallics, 2020, 39, 4395-4401.	1.1	17
76	Organochromium Complexes Bearing Noninnocent Diimine Ligands. European Journal of Inorganic Chemistry, 2012, 2012, 520-529.	1.0	16
77	Synthesis and structure of palladium(II) complexes supported by bis-NHC pincer ligands for the electrochemical activation of CO2. Polyhedron, 2017, 135, 134-143.	1.0	16
78	Porous metal–organic alloys based on soluble coordination cages. Chemical Science, 2020, 11, 12540-12546.	3.7	16
79	Synthesis and Reactivity of Pyrrolide-Diimine Complexes of Chromium. Collection of Czechoslovak Chemical Communications, 2007, 72, 637-648.	1.0	15
80	One-Pot Tandem Photoredox and Cross-Coupling Catalysis with a Single Palladium Carbodicarbene Complex. Angewandte Chemie, 2018, 130, 4712-4716.	1.6	15
81	The Distinct Conformational Landscapes of 4 <i>S</i> â€Substituted Prolines That Promote an <i>endo</i> Ring Pucker. Chemistry - A European Journal, 2019, 25, 11356-11364.	1.7	15
82	Synthesis, Characterization, and Reactivity of Chromium(VI) Alkylidenes. Organometallics, 2019, 38, 4593-4600.	1.1	15
83	Isolable dicarbon stabilized by a single phosphine ligand. Nature Chemistry, 2021, 13, 89-93.	6.6	15
84	Molecular structure and reactivity of a copper(I) tetramer. Chemical Communications, 1996, , 1081.	2.2	14
85	1D & 2D Supramolecular assemblies dominated by crystal structure of Pb(II) oxoanion (and) complexes with 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine (PDPT). Journal of Coordination Chemistry, 2006, 59, 1139-1148.	0.8	14
86	Synthesis of Biomimetic Zinc Complexes for CO2 Activation and the Influence of Steric Changes in the Ttz Ligands [Ttz = Tris(triazolyl)borate]. European Journal of Inorganic Chemistry, 2016, 2016, 2495-2507.	1.0	14
87	Nickel Carbodicarbene Catalyzes Kumada Cross-Coupling of Aryl Ethers with Grignard Reagents through C-O Bond Activation. European Journal of Inorganic Chemistry, 2019, 2019, 3511-3517.	1.0	14
88	Study of the structure of 1â€hydroxymethylindazole and 1â€hydroxymethylbenzotriazole by Xâ€ray crystallography, multinuclear NMR in solution and DFT calculations. Journal of Heterocyclic Chemistry, 2004, 41, 285-289.	1.4	13
89	Dioxygen Activation by Nonâ€Adiabatic Oxidative Addition to a Single Metal Center. Angewandte Chemie - International Edition, 2015, 54, 14974-14977.	7.2	12
90	Ferrocenyl-Substituted Tris(pyrazolyl)boratesâ€"A New Ligand Type Combining Redox Activity with Resistance to Hydrogen Atom Abstraction. Inorganic Chemistry, 2014, 53, 9424-9430.	1.9	11

#	Article	IF	Citations
91	Molecular and Electronic Structures and Single-Molecule Magnet Behavior of Tris(thioether)–Iron Complexes Containing Redox-Active α-Diimine Ligands. Inorganic Chemistry, 2021, 60, 6480-6491.	1.9	11
92	Synthesis, Redox, and Spectroscopic Properties of Pd(II) 10,10-Dimethylisocorrole Complexes Prepared via Bromination of Dimethylbiladiene Oligotetrapyrroles. Inorganic Chemistry, 2020, 59, 18241-18252.	1.9	11
93	Novel syntheses of carbazole-3,6-dicarboxylate ligands and their utilization for porous coordination cages. Dalton Transactions, 2020, 49, 16340-16347.	1.6	11
94	Electronic, Magnetic, and Redox Properties and O ₂ Reactivity of Iron(II) and Nickel(II) <i>o</i> -Semiquinonate Complexes of a Tris(thioether) Ligand: Uncovering the Intradiol Cleaving Reactivity of an Iron(II) <i>o</i> -Semiquinonate Complex. Inorganic Chemistry, 2017, 56, 10481-10495.	1.9	10
95	Modeling Pyran Formation in the Molybdenum Cofactor: Protonation of Quinoxalyl–Dithiolene Promoting Pyran Cyclization. Inorganic Chemistry, 2019, 58, 5134-5144.	1.9	10
96	Carbodicarbene: geminal â€Bimetallic Coordination in Selective Manner. Chemistry - A European Journal, 2020, 26, 17350-17355.	1.7	10
97	Deconvoluting the Innocent vs. Nonâ€Innocent Behavior of ⟨i>N⟨/i>,⟨i>N⟨/i⟩â€Diethylphenylazothioformamide Ligands with Copper Sources. European Journal of Inorganic Chemistry, 2017, 2017, 5576-5581.	1.0	10
98	4R- and 4S-iodophenyl hydroxyproline, 4R-pentynoyl hydroxyproline, and S-propargyl-4-thiolphenylalanine: conformationally biased and tunable amino acids for bioorthogonal reactions. Organic and Biomolecular Chemistry, 2016, 14, 2327-2346.	1.5	9
99	The structure of 1,1,3-trimethyl- $\hat{1}$ " < sup > 2 < /sup > - pyrazolinium perchlorate: An X-ray crystallographic and GIAO/DFT multinuclear NMR study. Spectroscopy, 2004, 18, 605-611.	0.8	8
100	Sulphur-enriched thiacalix[4] arenes in the cone conformation: synthesis, crystal structures and cation binding properties. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 239-250.	1.6	8
101	Nickel(II) Cyclen Complexes Bearing Ancillary Amide Appendages for the Electrocatalytic Reduction of CO ₂ . ACS Applied Energy Materials, 2019, 2, 8560-8569.	2.5	8
102	Design and synthesis of aryl-functionalized carbazole-based porous coordination cages. Chemical Communications, 2020, 56, 9352-9355.	2.2	8
103	Synthesis and magneto-structural correlation of a new maleato bridged copper(II) coordination polymer. Structural Chemistry, 2007, 18, 317-323.	1.0	7
104	Synthesis and Structural Comparison for a Series of Cr(II) (iodo) NacNac Complexes. Journal of Chemical Crystallography, 2009, 39, 73-77.	0.5	7
105	(2 <i>S</i> ,4 <i>R</i>)-4-Hydroxyproline(4-nitrobenzoate): Strong Induction of Stereoelectronic Effects via a Readily Synthesized Proline Derivative. Crystallographic Observation of a Correlation between Torsion Angle and Bond Length in a Hyperconjugative Interaction. Journal of Organic Chemistry, 2014, 79, 4174-4179.	1.7	7
106	A Strategy toward Icetexane Natural Products. European Journal of Organic Chemistry, 2018, 2018, 3348-3351.	1.2	7
107	Synthesis and characterization of low-nuclearity lantern-type porous coordination cages. Chemical Communications, 2020, 56, 8924-8927.	2.2	7
108	Synthesis, Spectroscopic, and ¹ O ₂ Sensitization Characteristics of Extended Pd(II) 10,10-Dimethylbiladiene Complexes Bearing Alkynyl–Aryl Appendages. Inorganic Chemistry, 2021, 60, 11154-11163.	1.9	7

#	Article	IF	CITATIONS
109	Synthesis, Electrochemistry, and Photophysics of Pd(II) Biladiene Complexes Bearing Varied Substituents at the sp ³ -Hybridized 10-Position. Inorganic Chemistry, 2021, 60, 15797-15807.	1.9	7
110	Utilization of a Mixed-Ligand Strategy to Tune the Properties of Cuboctahedral Porous Coordination Cages. Inorganic Chemistry, 2022, 61, 4609-4617.	1.9	7
111	Synthesis and Structure of bis (\hat{l}^2 -Diketiminate) Chromium(II) Complexes. Journal of Chemical Crystallography, 2010, 40, 67-71.	0.5	6
112	Synergistic Catalysis by Brønsted Acid/Carbodicarbene Mimicking Frustrated Lewis Pair‣ike Reactivity. Angewandte Chemie, 2021, 133, 20102-20109.	1.6	6
113	Synthesis of Fluorenes and Dibenzo $\{\langle i\rangle g, p\langle i\rangle\}$ chrysenes through an Oxidative Cascade. Journal of Organic Chemistry, 2022, 87, 1559-1563.	1.7	6
114	Phenylamido and Diphenylamido Complexes of Chromium(II). Journal of Chemical Crystallography, 2009, 39, 535-538.	0.5	5
115	Crystal Structure of Dimerized 1,3-Diisopropyl Carbodiimide. Journal of Chemical Crystallography, 2011, 41, 375-378.	0.5	5
116	Synthesis and Structure of a Chromium(III) Complex Supported by a \hat{l}^2 -diketiminate and an Enediolate Ligand. Journal of Chemical Crystallography, 2011, 41, 415-418.	0.5	5
117	Morphology, Molecular Orientation, and Solid-State Characterization of 2,3-Dihydrothieno[3,4- <i>b</i>][1,4]dioxine-2-carboxylic Acid (EDOTacid). Crystal Growth and Design, 2019, 19, 6184-6191.	1.4	5
118	(<i>Z</i>) <i>-</i> Trifluoromethyl-Trisubstituted Alkenes or Isoxazolines: Divergent Pathways from the Same Allene. Organic Letters, 2020, 22, 7208-7212.	2.4	5
119	Electrochemically Mediated Oxidation of Sensitive Propargylic Benzylic Alcohols. Organic Letters, 2022, 24, 1423-1428.	2.4	5

#	Article	IF	CITATIONS
127	An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex That Efficiently Promotes the $4e < \sup \hat{e}^* < \sup /4H < \sup > + < \sup > Peractivation of O < \sup > 2 < \int \sec e Complex Sub > 1 < \sup > 1 < \sup e Complex Sub > 1 < \sup e $	1.9	4
128	Modular Synthesis of a Semibuckminsterfullerene. Organic Letters, 2022, 24, 5095-5098.	2.4	4
129	Studies of η5-cyclichydrocarbon ruthenium(II) complexes containing para-amino-N-(pyrid-2-ylmethylene)phenylamine ligand: molecular structure of [(η5-C5H5)Ru(PPh3)(C5H4NCH=N-C6H4-p-NH2)]BF4. Journal of Coordination Chemistry, 2005, 58, 1607-1613.	0.8	3
130	Lanthanide dodecyl sulfates, a potent family of catalysts for the preparation of biobased epoxy thermosets. Chemical Communications, 2021, 57, 6784-6787.	2.2	3
131	A P-61 Black Widow Inspired Palladium Biladiene Complex for Efficient Sensitization of Singlet Oxygen Using Visible Light. Photochem, 2022, 2, 58-68.	1.3	3
132	Synthesis and Crystal Structure of 1,3-Bis(p-nitrophenoxy)propane. Journal of Chemical Crystallography, 2009, 39, 83-86.	0.5	2
133	Reactive Dicarbon as a Flexible Ligand for Transition-Metal Coordination and Catalysis. Journal of the American Chemical Society, 2022, 144, 12996-13005.	6.6	2
134	Crystal Structure of Cis-Dichloro-Bis- $\{[2-(Diphenylphosphino-\hat{l}^2-P) Methyl]Diphenylphosphine Oxide\}$ Palladium(II) Ethanol Solvate. Journal of Chemical Crystallography, 2011, 41, 247-250.	0.5	1
135	Acetate and acetamide complexes of [Ni(Me ₄ [12]aneN ₄)]PF ₆ : a tale of two ligands. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 640-643.	0.2	1
136	$ FcTp(\langle i \rangle R \langle i \rangle) \ (\langle i \rangle R \langle i \rangle = \langle \sup \rangle \langle i \rangle i \langle i \rangle \langle sup \rangle Pr \ or \langle \sup \rangle \langle i \rangle t \langle i \rangle \langle sup \rangle Bu): \ third-generation ferrocenyl scorpionates. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 813-818. $	0.2	1
137	An unusual bis-heteroscorpionate complex with anomalous ligands: [tris(3,4-dibromo-5-phenylpyrazolyl)hydroborato][hydrotris(3-neopentylpyrazolyl)borato]nickel(II). Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 802-805.	0.2	1
138	Scorpionate chemistry at the 50th anniversary. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 766-767.	0.2	1
139	Catalytic Enantioselective Birch–Heck Sequence for the Synthesis of Phenanthridinone Derivatives with an All-Carbon Quaternary Stereocenter. Journal of Organic Chemistry, 2022, 87, 1154-1172.	1.7	1
140	Mirror-plane disorder in a nickel chloride Schiff base complex: a suitable case study for crystallographic instruction. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 137-140.	0.2	1
141	A <i>Bis</i> â€(carbone) Pincer Ligand and Its Coordinative Behavior toward Multiâ€Metallic Configurations. Angewandte Chemie, 0, , .	1.6	1
142	Crystal Structure of [Me2NCH(O)]2Mg[(μ-OPr i)2Al(OPr i)2]2. Journal of Chemical Crystallography, 2010, 40, 716-719.	0.5	0
143	Synthesis and Reactivity Studies of a Series of Nickel(II) Arylchalcogenolates. Inorganic Chemistry, 2021, 60, 6327-6338.	1.9	0
144	Iron(II)–alkoxide and –aryloxide complexes of a tris(thioether)borate ligand: synthesis, molecular structures, and implications on the origin of instability of their iron(II)–catecholate counterpart. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 544-550.	0.2	0

#	Article	IF	CITATIONS
145	A molecular substitutional disorder case study suitable for instruction: <i>L</i> ₂ Cr ^{II} (THF)/ <i>L</i> ₂ [(trimethylsilyl)methyl]Cr ^{III} (<i>L</i> is 2,5-bis{[(2,6-diisopropylphenyl)imino]methyl}pyrrol-1-ide). Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 295-298.	0.2	0
146	Frontispiz: A <i>Bis</i> à€(carbone) Pincer Ligand and Its Coordinative Behavior toward Multiâ€Metallic Configurations. Angewandte Chemie, 2022, 134, .	1.6	O
147	Frontispiece: A <i>Bis</i> Àê€(carbone) Pincer Ligand and Its Coordinative Behavior toward Multiâ€Metallic Configurations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	0