List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365100/publications.pdf Version: 2024-02-01

ACNES DEIVIITA

#	Article	IF	CITATIONS
1	A numerical investigation of the influence of wind on convective heat transfer from the human body in a ventilated room. Building and Environment, 2021, 188, 107427.	6.9	13
2	Evaluation of the convective heat transfer coefficient of human body and its effect on the human thermoregulation predictions. Building and Environment, 2021, 196, 107778.	6.9	25
3	A Thermal Skin Model for Comparing Contact Skin Temperature Sensors and Assessing Measurement Errors. Sensors, 2021, 21, 4906.	3.8	2
4	Effect of movement on convection and ventilation in a skin-clothing-environment system. International Journal of Thermal Sciences, 2021, 166, 106965.	4.9	19
5	Numerical investigation of the effects of heterogeneous air gaps during high heat exposure for application in firefighter clothing. International Journal of Heat and Mass Transfer, 2021, 181, 121813.	4.8	11
6	Thermal model of an unconditioned, heated and ventilated seat to predict human thermo-physiological response and local thermal sensation. Building and Environment, 2020, 169, 106571.	6.9	7
7	Two isothermal challenges yield comparable physiological and subjective responses. European Journal of Applied Physiology, 2020, 120, 2761-2772.	2.5	1
8	Energy and Environmental Analysis of Single-Family Houses Located in Poland. Energies, 2020, 13, 2740.	3.1	27
9	Analytical clothing model for sensible heat transfer considering spatial heterogeneity. International Journal of Thermal Sciences, 2019, 145, 105949.	4.9	20
10	Influence of human body geometry, posture and the surrounding environment on body heat loss based on a validated numerical model. Building and Environment, 2019, 166, 106340.	6.9	23
11	Moisture transfer of the clothing–human body system during continuous sweating under radiant heat. Textile Reseach Journal, 2019, 89, 4537-4553.	2.2	24
12	The effect of garment combinations on thermal comfort of office clothing. Textile Reseach Journal, 2019, 89, 4425-4437.	2.2	23
13	Local clothing properties for thermo-physiological modelling: Comparison of methods and body positions. Building and Environment, 2019, 155, 376-388.	6.9	18
14	Apparent evaporative cooling efficiency in clothing with continuous perspiration: A sweating manikin study. International Journal of Thermal Sciences, 2019, 137, 446-455.	4.9	19
15	Effect of perspired moisture and material properties on evaporative cooling and thermal protection of the clothed human body exposed to radiant heat. Textile Reseach Journal, 2019, 89, 3663-3676.	2.2	21
16	Artificial skin for sweating guarded hotplates and manikins based on weft knitted fabrics. Textile Reseach Journal, 2019, 89, 657-672.	2.2	4
17	Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response. International Journal of Biometeorology, 2018, 62, 1121-1134.	3.0	21
18	Thermal sensation models: Validation and sensitivity towards thermo-physiological parameters. Building and Environment, 2018, 130, 200-211.	6.9	35

#	Article	IF	CITATIONS
19	3D body scanning. , 2018, , 237-252.		25
20	Human simulator – A tool for predicting thermal sensation in the built environment. Building and Environment, 2018, 143, 632-644.	6.9	10
21	Using a human thermoregulation model as a tool for design and refurbishment of industrial spaces for human occupancy. Energy and Buildings, 2018, 168, 76-85.	6.7	3
22	Determination of the effect of fabric properties on the coupled heat and moisture transport of underwear–shirt fabric combinations. Textile Reseach Journal, 2018, 88, 1319-1331.	2.2	14
23	A validation methodology and application of 3D garment simulation software to determine the distribution of air layers in garments during walking. Measurement: Journal of the International Measurement Confederation, 2018, 117, 153-164.	5.0	18
24	Determination of car seat contact area for personalised thermal sensation modelling. PLoS ONE, 2018, 13, e0208599.	2.5	7
25	Local clothing thermal properties of typical office ensembles under realistic static and dynamic conditions. International Journal of Biometeorology, 2018, 62, 2215-2229.	3.0	20
26	Contact skin temperature measurements and associated effects of obstructing local sweat evaporation during mild exercise-induced heat stress. Physiological Measurement, 2018, 39, 075003.	2.1	12
27	The effect of body postures on the distribution of air gap thickness and contact area. International Journal of Biometeorology, 2017, 61, 363-375.	3.0	39
28	Thermal manikins controlled by human thermoregulation models for energy efficiency and thermal comfort research – A review. Renewable and Sustainable Energy Reviews, 2017, 78, 1315-1330.	16.4	63
29	Comparison of fabric skins for the simulation of sweating on thermal manikins. International Journal of Biometeorology, 2017, 61, 1519-1529.	3.0	16
30	Human responses in heat – comparison of the Predicted Heat Strain and the Fiala multi-node model for a case of intermittent work. Journal of Thermal Biology, 2017, 70, 45-52.	2.5	25
31	Thermal sensation models: a systematic comparison. Indoor Air, 2017, 27, 680-689.	4.3	32
32	Multi-sector thermo-physiological head simulator for headgear research. International Journal of Biometeorology, 2017, 61, 273-285.	3.0	12
33	Individualization of Thermophysiological Models for Thermal Sensation Assessment in Complex Environments: A Preliminary Study. , 2017, , .		Ο
34	Thermo-physiological simulation. , 2017, , 331-349.		1
35	An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing. Industrial Health, 2017, 55, 500-512.	1.0	9
36	Quantitative validation of 3D garment simulation software for determination of air gap thickness in lower body garments. IOP Conference Series: Materials Science and Engineering, 2017, 254, 162007.	0.6	3

#	Article	IF	CITATIONS
37	Validation of an instrumented dummy to assess mechanical aspects of discomfort during load carriage. PLoS ONE, 2017, 12, e0180069.	2.5	6
38	Effects of the cycling workload on core and local skin temperatures. Experimental Thermal and Fluid Science, 2016, 77, 91-99.	2.7	29
39	Validation of the thermophysiological model by Fiala for prediction of local skin temperatures. International Journal of Biometeorology, 2016, 60, 1969-1982.	3.0	27
40	Contribution of garment fit and style to thermal comfort at the lower body. International Journal of Biometeorology, 2016, 60, 1995-2004.	3.0	34
41	Global and local heat transfer analysis for bicycle helmets using thermal head manikins. International Journal of Industrial Ergonomics, 2016, 53, 157-166.	2.6	11
42	Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body. International Journal of Biometeorology, 2016, 60, 435-446.	3.0	32
43	A systematic approach to the development and validation of adaptive manikins. Extreme Physiology and Medicine, 2015, 4, .	2.5	6
44	Validation of a physiological model for controlling a thermal head simulator. Extreme Physiology and Medicine, 2015, 4, A73.	2.5	4
45	Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition. Textile Reseach Journal, 2015, 85, 2196-2207.	2.2	40
46	Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection. International Journal of Biometeorology, 2015, 59, 1875-1889.	3.0	26
47	Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Physics and Technology, 2015, 72, 68-76.	2.9	53
48	Validation of a novel 3D scanning method for determination of the air gap in clothing. Measurement: Journal of the International Measurement Confederation, 2015, 67, 61-70.	5.0	33
49	Effect of heterogenous and homogenous air gaps on dry heat loss through the garment. International Journal of Biometeorology, 2015, 59, 1701-1710.	3.0	69
50	Effect of garment properties on air gap thickness and the contact area distribution. Textile Reseach Journal, 2015, 85, 1907-1918.	2.2	40
51	Study on effect of blend ratio on thermal comfort properties of cotton/nylon-blended fabrics with high-performance Kermel fibre. Journal of the Textile Institute, 2015, 106, 674-682.	1.9	16
52	Heat flux measurements for use in physiological and clothing research. International Journal of Biometeorology, 2014, 58, 1069-1075.	3.0	13
53	Prediction of human core body temperature using non-invasive measurement methods. International Journal of Biometeorology, 2014, 58, 7-15.	3.0	89
54	Effect of ambient temperature and attachment method on surface temperature measurements. International Journal of Biometeorology, 2014, 58, 877-885.	3.0	41

#	Article	IF	CITATIONS
55	Prediction of the Physiological Response of Humans Wearing Protective Clothing Using a Thermophysiological Human Simulator. Journal of Occupational and Environmental Hygiene, 2013, 10, 222-232.	1.0	40
56	An introduction to the Universal Thermal Climate Index (UTCI). Geographia Polonica, 2013, 86, 5-10.	1.0	269
57	Quantitative evaluation of air gap thickness and contact area between body and garment. Textile Reseach Journal, 2012, 82, 1405-1413.	2.2	83
58	Assessment of the Coupled Heat and Mass Transfer Through Protective Garments Using Manikins and Other Advanced Measurement Devices. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 83-98.	0.3	3
59	Validation of the Fiala multi-node thermophysiological model for UTCI application. International Journal of Biometeorology, 2012, 56, 443-460.	3.0	123
60	Use of 3D Body Scanning Technique for Heat and Mass Transfer Modelling in Clothing. , 2012, , .		3
61	Physiological modeling for technical clinical and research applications. Frontiers in Bioscience - Scholar, 2010, S2, 939-968.	2.1	77
62	How to measure thermal effects of personal cooling systems: human, thermal manikin and human simulator study. Physiological Measurement, 2010, 31, 1161-1168.	2.1	48
63	Single-sector thermophysiological human simulator. Physiological Measurement, 2008, 29, 181-192.	2.1	54