Olivier Proux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7365026/publications.pdf

Version: 2024-02-01

147 papers	5,295 citations	94381 37 h-index	98753 67 g-index
151	151	151	7691 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Metal Ion Binding in Wild-Type and Mutated Frataxin: A Stability Study. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	O
2	Cu(II)–Glycerol– <i>N</i> -Ethylmorpholine Complex Stability Revealed by X-ray Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 1483-1492.	1.5	3
3	A Bioinspired Ni ^{II} Superoxide Dismutase Catalyst Designed on an ATCUN-like Binding Motif. Inorganic Chemistry, 2021, 60, 12772-12780.	1.9	7
4	Znâ€Induced Interactions Between SARSâ€CoVâ€2 orf7a and BST2/Tetherin. ChemistryOpen, 2021, 10, 1133-11	14 b .9	11
5	<i>Operando</i> X-ray Absorption Spectroscopy Investigation of Photocatalytic Hydrogen Evolution over Ultradispersed Pt/TiO ₂ Catalysts. ACS Catalysis, 2020, 10, 12696-12705.	5 . 5	37
6	Interplay between local structure and magnetic properties of graded exchange-coupled Co@FePt nanocomposite films. Physical Review B, 2020, 102, .	1.1	4
7	New insights on Br speciation in volcanic glasses and structural controls on halogen degassing. American Mineralogist, 2020, 105, 795-802.	0.9	8
8	Atomic Scale Insight into the Formation, Size, and Location of Platinum Nanoparticles Supported on \hat{I}^3 -Alumina. ACS Catalysis, 2020, 10, 4193-4204.	5.5	30
9	Oxidative transformation of Tungsten (W) nanoparticles potentially released in aqueous and biological media in case of Tokamak (nuclear fusion) Lost of Vacuum Accident (LOVA). Comptes Rendus - Geoscience, 2020, 352, 539-558.	0.4	4
10	Reversible densification in nano-Li ₂ MnO ₃ cation disordered rock-salt Li-ion battery cathodes. Journal of Materials Chemistry A, 2020, 8, 10998-11010.	5.2	15
11	Extreme Arsenic Bioaccumulation Factor Variability in Lake Titicaca, Bolivia. Scientific Reports, 2019, 9, 10626.	1.6	14
12	A Solventâ€Exposed Cysteine Forms a Peculiar Ni II â€Binding Site in the Metallochaperone CooT from Rhodospirillum rubrum. Chemistry - A European Journal, 2019, 25, 15351-15360.	1.7	9
13	The iron record of asteroidal processes in carbonaceous chondrites. Meteoritics and Planetary Science, 2019, 54, 2652-2665.	0.7	9
14	In situ X-ray absorption spectroscopy study of zinc and cadmium transport by S-rich fluids. E3S Web of Conferences, 2019, 98, 04002.	0.2	0
15	Rare earth element partitioning between sulphides and melt: Evidence for Yb2+ and Sm2+ in EH chondrites. Geochimica Et Cosmochimica Acta, 2019, 265, 182-197.	1.6	12
16	Mononuclear Ni(II) Complexes with a S3O Coordination Sphere Based on a Tripodal Cysteine-Rich Ligand: pH Tuning of the Superoxide Dismutase Activity. Inorganic Chemistry, 2019, 58, 12775-12785.	1.9	6
17	Dealing with Cu reduction in X-ray absorption spectroscopy experiments. Metallomics, 2019, 11, 1401-1410.	1.0	11
18	Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation. NanoImpact, 2019, 14, 100168.	2.4	29

#	Article	IF	CITATIONS
19	The nature and partitioning of invisible gold in the pyrite-fluid system. Ore Geology Reviews, 2019, 109, 545-563.	1.1	53
20	Sub-ppm level high energy resolution fluorescence detected X-ray absorption spectroscopy of selenium in articular cartilage. Analyst, The, 2019, 144, 3488-3493.	1.7	20
21	Utility of macrophages in an antitumor strategy based on the vectorization of iron oxide nanoparticles. Nanoscale, 2019, 11, 9341-9352.	2.8	19
22	X-Ray Absorption Spectroscopy Measurements of Cu-ProIAPP Complexes at Physiological Concentrations. Condensed Matter, 2019, 4, 13.	0.8	6
23	Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen. Journal of Catalysis, 2018, 363, 34-51.	3.1	9
24	A new high temperature reactor for operando XAS: Application for the dry reforming of methane over Ni/ZrO2 catalyst. Review of Scientific Instruments, 2018, 89, 035109.	0.6	13
25	Mercury Trithiolate Binding (HgS ₃) to a de Novo Designed Cyclic Decapeptide with Three Preoriented Cysteine Side Chains. Inorganic Chemistry, 2018, 57, 2705-2713.	1.9	14
26	Trace metals dynamics under contrasted land uses: contribution of statistical, isotopic, and EXAFS approaches. Environmental Science and Pollution Research, 2018, 25, 23383-23403.	2.7	0
27	Geochemical control on the reduction of U(VI) to mononuclear U(IV) species in lacustrine sediments. Geochimica Et Cosmochimica Acta, 2018, 222, 171-186.	1.6	36
28	Impact of a Model Soil Microorganism and of Its Secretome on the Fate of Silver Nanoparticles. Environmental Science & Environ	4.6	21
29	Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency. Science of the Total Environment, 2018, 618, 1619-1627.	3.9	20
30	Operando X-ray Absorption Spectroscopy and Emission \hat{Kl}^2 -sub>1,3 Study of the Manganese Redox Activity in High-Capacity Li ₄ Mn ₂ O ₅ Cathode. Journal of Physical Chemistry C, 2018, 122, 29586-29597.	1.5	9
31	Redox Fluctuations and Organic Complexation Govern Uranium Redistribution from U(IV)-Phosphate Minerals in a Mining-Polluted Wetland Soil, Brittany, France. Environmental Science & Emp; Technology, 2018, 52, 13099-13109.	4.6	40
32	Strain engineering of photo-induced phase transformations in Prussian blue analogue heterostructures. Nanoscale, 2018, 10, 16030-16039.	2.8	16
33	Influence of the pore diameter in Cu/Co/Cu antidots: A XANES study. Physical Review Materials, 2018, 2,	0.9	4
34	Pools of cadmium in Chlamydomonas reinhardtii revealed by chemical imaging and XAS spectroscopy. Metallomics, 2017, 9, 910-923.	1.0	25
35	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>Eu</mml:mi><mml:m athvariant="normal">F<mml:mn>4</mml:mn></mml:m></mml:msub><mml:msub><mml:mi>Bi</mml:mi><mml:mi><mml:mn>4</mml:mn></mml:mi></mml:msub></mml:mrow> material revealed by x-ray absorption spectroscopy and photoelectron spectromicroscopy. Physical Review B.	nn>3ml:mn>2< 1.1	nl:mn>:/mml:mn> <br 15
36	Highâ€Energy Resolution Fluorescence Detected Xâ€Ray Absorption Spectroscopy: A Powerful New Structural Tool in Environmental Biogeochemistry Sciences. Journal of Environmental Quality, 2017, 46, 1146-1157.	1.0	72

#	Article	IF	CITATIONS
37	Vertical changes of the Co and Mn speciation along a lateritic regolith developed on peridotites (New) Tj ETQq1 1	0.784314 1.6	l rggBT /Ov <mark>er</mark>
38	Growth and properties of CoO/Fe perpendicular exchange coupled ultra-thin films. Journal of Magnetism and Magnetic Materials, 2017, 443, 195-201.	1.0	2
39	Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles. Environmental Science & Environmental Sci	4.6	49
40	Distinct local structure of superconducting Ca10M4As8(Fe2As2)5(M=Pt,Ir). Physical Review B, 2017, 96,	1.1	5
41	Characterization of Germanium Speciation in Sphalerite (ZnS) from Central and Eastern Tennessee, USA, by X-ray Absorption Spectroscopy. Minerals (Basel, Switzerland), 2017, 7, 79.	0.8	32
42	Experimental investigation of As, Sb and Cs behavior during olivine serpentinization in hydrothermal alkaline systems. Geochimica Et Cosmochimica Acta, 2016, 179, 177-202.	1.6	15
43	Identification of Catalyst Structure during the Hydrogen Oxidation Reaction in an Operating PEM Fuel Cell. ACS Catalysis, 2016, 6, 7326-7334.	5 . 5	34
44	Determination of the local structure of CsBi $<$ sub $>$ 4 $\hat{a}^*xsub>Pb<sub>xsub>Te₆ (x = 0,) Tj ETQq0$	O OʻʻgBT /C	Dyerlock 10
45	Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve <i>Dreissena polymorpha</i> . Nanotoxicology, 2016, 10, 935-944.	1.6	37
46	Mononuclear U(IV) complexes and ningyoite as major uranium species in lake sediments. Geochemical Perspectives Letters, 2016 , , .	1.0	12
47	Physicochemical Properties of Nanoparticles in Relation with Toxicity., 2016,, 3183-3195.		O
48	A Noachian source region for the "Black Beauty―meteorite, and a source lithology for Mars surface hydrated dust?. Earth and Planetary Science Letters, 2015, 427, 104-111.	1.8	24
49	Local structure around Zn and Ga in solutionâ€processed In–Ga–Zn–O and implications for electronic properties. Physica Status Solidi - Rapid Research Letters, 2015, 9, 652-655.	1.2	7
50	Cu(II)–Zn(II) Cross-Modulation in Amyloid–Beta Peptide Binding: An X-ray Absorption Spectroscopy Study. Journal of Physical Chemistry B, 2015, 119, 15813-15820.	1.2	16
51	Fate of cadmium in the rhizosphere of Arabidopsis halleri grown in a contaminated dredged sediment. Science of the Total Environment, 2015, 536, 468-480.	3.9	16
52	In situ site-selective transition metal K-edge XAS: a powerful probe of the transformation of mixed-valence compounds. Physical Chemistry Chemical Physics, 2015, 17, 17260-17265.	1.3	15
53	Reactivity of Cys4 Zinc Finger Domains with Gold(III) Complexes: Insights into the Formation of "Gold Fingersâ€₁ Inorganic Chemistry, 2015, 54, 4104-4113.	1.9	37
54	Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: fate and transport of CeO ₂ nanoparticles. Environmental Science: Nano, 2015, 2, 653-663.	2.2	42

#	Article	IF	CITATIONS
55	Sulfur radical species form gold deposits on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13484-13489.	3.3	107
56	Behavior of fission gases in nuclear fuel: XAS characterization of Kr in UO2. Journal of Nuclear Materials, 2015, 466, 379-392.	1.3	22
57	X-ray absorption spectroscopy investigations on radioactive matter using MARS beamline at SOLEIL synchrotron. Radiochimica Acta, 2014, 102, 957-972.	0.5	46
58	Long-term aging of a CeO2 based nanocomposite used for wood protection. Environmental Pollution, 2014, 188, 1-7.	3.7	59
59	Photocatalysis with Chromiumâ€Doped TiO ₂ : Bulk and Surface Doping. ChemSusChem, 2014, 7, 1361-1371.	3.6	68
60	Superparamagnetic Iron Oxide Nanoparticles as Novel X-ray Enhancer for Low-Dose Radiation Therapy. Journal of Physical Chemistry B, 2014, 118, 6159-6166.	1.2	105
61	Copper–zinc cross-modulation in prion protein binding. European Biophysics Journal, 2014, 43, 631-642.	1.2	15
62	Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (<i>Fundulus) Tj ETQq0 0 C</i>	rgBT/Ove	erlock 10 Tf 50
63	Zinc Speciation in the Suspended Particulate Matter of an Urban River (Orge, France): Influence of Seasonality and Urbanization Gradient. Environmental Science & Environmental Science & 2014, 48, 11901-11909.	4.6	13
64	Monitoring Morphology and Hydrogen Coverage of Nanometric Pt∫i³â€Al ₂ O ₃ Particles by Inâ€Situ HERFD–XANES and Quantum Simulations. Angewandte Chemie - International Edition, 2014, 53, 12426-12429.	7.2	47
65	Competition between CoOx and CoPt phases in Pt/Co/AlO <i>x</i> semi tunnel junctions. Journal of Applied Physics 2013 114 Emergence of Ferromagnetism and Jahn-Teller distortion in LaMn <mml:math< td=""><td>1.1</td><td>10</td></mml:math<>	1.1	10
66	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub> <td>o> 1.1</td> <td>nath>Cr<mml 19</mml </td>	o> 1.1	nath>Cr <mml 19</mml
67	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /xmml: Zn impacts Cu coordination to amyloid-l², the Alzheimer's peptide, but not the ROS production and the associated cell toxicity. Chemical Communications, 2013, 49, 1214.</mml:mrow </mml:msub>	2.2	58
68	Low Temperature Ferromagnetism in Chemically Ordered FeRh Nanocrystals. Physical Review Letters, 2013, 110, 087207.	2.9	39
69	Element-specific quantitative determination of the local atomic order in CoPt alloy nanoparticles: Experiment and theory. Physical Review B, 2013, 87, .	1.1	33
7 0	Influence of monovalent ions on density fluctuations in hydrothermal aqueous solutions by small angle X-ray scattering. Journal of Chemical Physics, 2012, 136, 044515.	1.2	3
71	High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline. Review of Scientific Instruments, 2012, 83, 063104.	0.6	55
72	Magnetic and structural properties of the Fe layers in CoO/Fe/Ag(001) heterostructure. Applied Physics Letters, 2012, 100, 132403.	1.5	17

#	Article	IF	Citations
73	X-ray Absorption Fine Structure Evidence for Amorphous Zinc Sulfide as a Major Zinc Species in Suspended Matter from the Seine River Downstream of Paris, lle-de-France, France. Environmental Science & Environmental Science	4.6	36
74	Is There a Trojan-Horse Effect during Magnetic Nanoparticles and Metalloid Cocontamination of Human Dermal Fibroblasts?. Environmental Science & Environmental Science & 2012, 46, 10789-10796.	4.6	13
75	Biotemplated synthesis of highly divided MoS2 catalysts. Journal of Materials Chemistry, 2012, 22, 9731.	6.7	23
76	Spectroscopic Characterization of the Metal-Binding Sites in the Periplasmic Metal-Sensor Domain of CnrX from <i>Cupriavidus metallidurans</i>	1,2	10
77	Random alloy-like local structure of Fe(Se, S)1â^'xTexsuperconductors revealed by extended x-ray absorption fine structure. Journal of Physics Condensed Matter, 2011, 23, 425701.	0.7	15
78	Zinc modulates copper coordination mode in prion protein octa-repeat subdomains. European Biophysics Journal, 2011, 40, 1259-1270.	1.2	36
79	Combining Size Fractionation, Scanning Electron Microscopy, and Xâ€ray Absorption Spectroscopy to Probe Zinc Speciation in Pig Slurry. Journal of Environmental Quality, 2010, 39, 531-540.	1.0	27
80	Structural origin of perpendicular magnetic anisotropy in epitaxialCoPt3nanostructures grown onWSe2(0001). Physical Review B, 2010, 81, .	1.1	17
81	Uptake, Localization, and Speciation of Cobalt in <i>Triticum aestivum </i> L. (Wheat) and <i>Lycopersicon esculentum </i> M. (Tomato). Environmental Science & Environmental	4.6	32
82	An in situ XAS study of copper(I) transport as hydrosulfide complexes in hydrothermal solutions (25–592 °C, 180–600 bar): Speciation and solubility in vapor and liquid phases. Geochimica Et Cosmochimica Acta, 2010, 74, 4723-4739.	1.6	83
83	Speciation of Cd and Pb in dust emitted from sinter plant. Chemosphere, 2010, 78, 445-450.	4.2	99
84	Fe-heme structure in Cu,Zn superoxide dismutase from Haemophilus ducreyi by X-ray Absorption Spectroscopy. Archives of Biochemistry and Biophysics, 2010, 498, 43-49.	1.4	3
85	Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy. American Mineralogist, 2010, 95, 921-932.	0.9	41
86	Modelling of Pb release during Portland cement alteration. Advances in Cement Research, 2009, 21, 1-10.	0.7	9
87	Enhanced Selenate Accumulation in <i>Cupriavidus metallidurans</i> CH34 Does Not Trigger a Detoxification Pathway. Applied and Environmental Microbiology, 2009, 75, 2250-2252.	1.4	5
88	High-resolution spectroscopy on an X-ray absorption beamline. Journal of Synchrotron Radiation, 2009, 16, 283-292.	1.0	55
89	Structural characterization of the active form of PerR: insights into the metalâ€induced activation of PerR and Fur proteins for DNA binding. Molecular Microbiology, 2009, 73, 20-31.	1.2	97
90	X-ray absorption spectroscopy study of solvation and ion-pairing in aqueous gallium bromide solutions at supercritical conditions. Journal of Molecular Liquids, 2009, 147, 83-95.	2.3	21

#	Article	IF	CITATIONS
91	An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids. Chemical Geology, 2009, 259, 17-29.	1.4	69
92	Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion. Geochimica Et Cosmochimica Acta, 2009, 73, 4750-4760.	1.6	28
93	A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling. Geochimica Et Cosmochimica Acta, 2009, 73, 5406-5427.	1.6	123
94	CeO ₂ nanoparticles induce DNA damage towards human dermal fibroblasts <i>in vitro</i> Nanotoxicology, 2009, 3, 161-171.	1.6	179
95	The role of aspartyl-rich pentapeptides in comparative complexation of actinide(iv) and iron(iii). Part 1. New Journal of Chemistry, 2009, 33, 976.	1.4	16
96	Comparison of EXAFS foil spectra from around the world. Journal of Physics: Conference Series, 2009, 190, 012032.	0.3	11
97	XAS characterisation of xenon bubbles in uranium dioxide. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2887-2891.	0.6	28
98	Transmission electron microscopic and X-ray absorption fine structure spectroscopic investigation of U repartition and speciation after accumulation in renal cells. Journal of Biological Inorganic Chemistry, 2008, 13, 655-662.	1.1	28
99	Changes in arsenic speciation through a contaminated soil profile: A XAS based study. Science of the Total Environment, 2008, 397, 178-189.	3.9	78
100	Enhanced Adsorption of Arsenic onto Maghemites Nanoparticles:  As(III) as a Probe of the Surface Structure and Heterogeneity. Langmuir, 2008, 24, 3215-3222.	1.6	185
101	Extended X-ray Absorption Fine Structure Analysis of Arsenite and Arsenate Adsorption on Maghemite. Environmental Science & En	4.6	107
102	Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite. Geochimica Et Cosmochimica Acta, 2008, 72, 4886-4900.	1.6	165
103	Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X-ray spectroscopy. Chemosphere, 2008, 70, 1945-1951.	4.2	48
104	Zr and Hf microalloying in an Al–Y–Fe amorphous alloy. Relation between local structure and glass-forming ability. Philosophical Magazine, 2008, 88, 2569-2582.	0.7	7
105	Environmental Impact of Steel Slag Reused as Aggregates in Road Manufacturing: Molecular Mechanisms of Chromium and Vanadium Release. AIP Conference Proceedings, 2007, , .	0.3	4
106	An XAS study of the structure and thermodynamics of Cu(I) chloride complexes in brines up to high temperature (400°C, 600bar). Geochimica Et Cosmochimica Acta, 2007, 71, 4920-4941.	1.6	124
107	Local order and nanostructure induced by microalloying in Al–Y–Fe amorphous alloys. Journal of Non-Crystalline Solids, 2007, 353, 2758-2766.	1.5	12
108	New Methodological Approach for the Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation:Â Application to the Speciation of Vanadium in Oxide Phases from Steel Slag. Journal of Physical Chemistry B, 2007, 111, 5101-5110.	1.2	138

#	Article	IF	CITATIONS
109	EXAFS Signatures of Structural Zn at Trace Levels in Layered Minerals. AIP Conference Proceedings, 2007, , .	0.3	O
110	Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. Journal of Hazardous Materials, 2007, 139, 537-542.	6.5	184
111	Evidence for the presence of U–Mo–Al ternary compounds in the U–Mo/Al interaction layer grown by thermal annealing: a coupled micro X-ray diffraction and micro X-ray absorption spectroscopy study. Journal of Applied Crystallography, 2007, 40, 1064-1075.	1.9	37
112	Temperature dependent XAFS studies of local atomic structure of the perovskite-type zirconates. Physical Review B, 2006, 73, .	1.1	17
113	Citrate Does Not Change Uranium Chemical Speciation in Cell Culture Medium but Increases Its Toxicity and Accumulation in NRK-52E Cells. Chemical Research in Toxicology, 2006, 19, 1637-1642.	1.7	36
114	Feedback system of a liquid-nitrogen-cooled double-crystal monochromator: design and performances. Journal of Synchrotron Radiation, 2006, 13, 59-68.	1.0	131
115	A study of xenon aggregates in uranium dioxide using X-ray absorption spectroscopy. Journal of Nuclear Materials, 2006, 352, 136-143.	1.3	38
116	Electrochemical lithium intercalation in nanosized manganese oxides. Journal of Physics and Chemistry of Solids, 2006, 67, 1258-1264.	1.9	5
117	New nanocrystalline manganese oxides as cathode materials for lithium batteries: Electron microscopy, electrochemical and X-ray absorption studies. Solid State Ionics, 2006, 177, 523-533.	1.3	4
118	Hard x-ray spectroscopy inNaxCoO2and superconductingNaxCoO2â [™] yH2O: Bulk Co electronic properties. Physical Review B, 2006, 74, .	1.1	7
119	Structural and electrochemical properties of new nanospherical manganese oxides for lithium batteries. Journal of Materials Chemistry, 2005, 15, 4799.	6.7	11
120	XAS Evidence of As(V) Association with Iron Oxyhydroxides in a Contaminated Soil at a Former Arsenical Pesticide Processing Plant. Environmental Science & Echnology, 2005, 39, 9398-9405.	4.6	126
121	X-ray Absorption Investigation of a Unique Protein Domain Able To Bind both Copper(I) and Copper(II) at Adjacent Sites of the N-Terminus of Haemophilus ducreyi Cu,Zn Superoxide Dismutase. Biochemistry, 2005, 44, 13144-13150.	1.2	22
122	FAME A New Beamline for XRay Absorption Investigations of VeryDiluted Systems of Environmental, Material and Biological Interests. Physica Scripta, 2005, , 970.	1.2	176
123	Effect of iron on delithiation in LixCo1â^'yFeyO2. Part 2:in-situ XANES and EXAFS upon electrochemical cycling. Journal of Materials Chemistry, 2004, 14, 102-110.	6.7	19
124	Natural speciation of Zn at the micrometer scale in a clayey soil using X-ray fluorescence, absorption, and diffraction. Geochimica Et Cosmochimica Acta, 2004, 68, 2467-2483.	1.6	156
125	Local Structure and Valence State of Mn in Ga1â^'x Mn x N Epilayers. Journal of Superconductivity and Novel Magnetism, 2003, 16, 127-129.	0.5	22
126	A XAS study of the local environments of cations in (U, Ce)O2. Journal of Nuclear Materials, 2003, 312, 103-110.	1.3	40

#	Article	IF	Citations
127	Aqueous Zirconium Complexes for Gelling Polymers. A Combined X-ray Absorption Spectroscopy and Quantum Mechanical Study. Journal of Physical Chemistry B, 2003, 107, 2910-2920.	1.2	29
128	Structural investigations of Co/ZrO2discontinuous multilayers by x-ray absorption fine structure spectroscopy. Journal of Physics Condensed Matter, 2003, 15, 7237-7252.	0.7	2
129	Forms of Zinc Accumulated in the HyperaccumulatorArabidopsis halleri Â. Plant Physiology, 2002, 130, 1815-1826.	2.3	302
130	Electrochemical Reactions of Iron Borates with Lithium: Electrochemical and in Situ Mössbauer and X-ray Absorption Studies. Chemistry of Materials, 2002, 14, 1166-1173.	3.2	38
131	Studies of short-range ordering in amorphous In–Se films by EXAFS. Journal of Non-Crystalline Solids, 2002, 299-302, 238-242.	1.5	11
132	In situ X-ray absorption spectroscopy study of lithium insertion in a new disordered manganese oxi-iodide. Electrochimica Acta, 2002, 47, 3171-3178.	2.6	16
133	Application of Third Generation Synchrotron Source to Studies of Non-Crystalline Materials: In-Se Amorphous Films. Acta Physica Polonica A, 2002, 101, 701-708.	0.2	2
134	Contribution of the fluorescence to conversion electron yield X-ray absorption fine-structure measurements. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 2199-2215.	0.7	1
135	In situ QEXAFS investigation at Co K-edge of the sulfidation of a CoMo/Al2O3 hydrotreating catalyst. Catalysis Letters, 2001, 73, 95-98.	1.4	28
136	In situ X-ray absorption spectroscopy study of the thermal behaviour of giant magnetoresistance CoxAg1â^'xand NixAg1â^'xheterogeneous alloys. EPJ Applied Physics, 2000, 9, 115-124.	0.3	4
137	Structural and morphological studies of Co/SiO2 discontinuous multilayers. Physica B: Condensed Matter, 2000, 283, 114-118.	1.3	15
138	Structural and magnetic properties of Fe/ZrO2 continuous and discontinuous multilayers. Journal of Magnetism and Magnetic Materials, 2000, 217, 175-187.	1.0	14
139	Structural coherence between phases in Ni0.35Ag0.65thin films. Journal of Physics Condensed Matter, 2000, 12, 3939-3953.	0.7	4
140	Structural evolution of NiAg heterogeneous alloys upon annealing. Journal of Physics Condensed Matter, 1999, 11, 147-162.	0.7	14
141	On the Homogeneity of Single Phase Obtained in Metallic Systems with Positive Heat of Mixing. European Physical Journal Special Topics, 1997, 7, C2-1025-C2-1026.	0.2	1
142	Nanostructure of Ciant Magnetoresistance Heterogeneous Alloys Ni _{0.20} Ag _{0.80} After Annealing. European Physical Journal Special Topics, 1997, 7, C2-1111-C2-1113.	0.2	2
143	Low temperature total electron yield EXAFS study of CoxAg1â°'x granular alloys. Solid State Communications, 1996, 97, 419-423.	0.9	13
144	Residual stresses influence on the structural evolution of Cuî—, Mo solid solutions studied by X-ray diffraction. Thin Solid Films, 1996, 275, 25-28.	0.8	7

#	Article	IF	CITATIONS
145	Étude de la structure de multicouches Au/Pt par des techniques complémentaires de rayons X. European Physical Journal Special Topics, 1996, 06, C7-43-C7-51.	0.2	1
146	Introduction of Cobalt Ions in \hat{I}^3 -Fe ₂ O ₃ Nanoparticles by Direct Coprecipitation or Postsynthesis Adsorption: Dopant Localization and Magnetic Anisotropy. Journal of Physical Chemistry C, 0, , 130918100525007.	1.5	2
147	An arsenic-driven pump for invisible gold in hydrothermal systems. Geochemical Perspectives Letters, 0, 17, 39-44.	1.0	32