List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7364991/publications.pdf Version: 2024-02-01

		23567	31849
181	11,738	58	101
papers	citations	h-index	g-index
181	181	181	8839
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Modeling a biogas upgrading PSA unit with a sustainable activated carbon derived from pine sawdust. Sensitivity analysis on the adsorption of CO2 and CH4 mixtures. Chemical Engineering Journal, 2022, 428, 132564.	12.7	30
2	Blends of bio-oil/biogas model compounds for high-purity H2 production by sorption enhanced steam reforming (SESR): Experimental study and energy analysis. Chemical Engineering Journal, 2022, 432, 134396.	12.7	16
3	Experimental Study on the Kinetics of CO ₂ and H ₂ O Adsorption on Honeycomb Carbon Monoliths under Cement Flue Gas Conditions. ACS Sustainable Chemistry and Engineering, 2022, 10, 2107-2124.	6.7	11
4	Renewable hydrogen production from biogas by sorption enhanced steam reforming (SESR): A parametric study. Energy, 2021, 218, 119491.	8.8	33
5	Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain. Applied Energy, 2021, 300, 117418.	10.1	40
6	Residual pyrolysis biochar as additive to enhance wood pellets quality. Renewable Energy, 2021, 180, 850-859.	8.9	13
7	Thermodynamic Analysis of Biomass Gasification Using Aspen Plus: Comparison of Stoichiometric and Non-Stoichiometric Models. Energies, 2021, 14, 189.	3.1	27
8	Co-pelletization of pine sawdust and refused derived fuel (RDF) to high-quality waste-derived pellets. Journal of Cleaner Production, 2021, 328, 129635.	9.3	25
9	Vacuum swing CO2 adsorption cycles in Waste-to-Energy plants. Chemical Engineering Journal, 2020, 382, 122841.	12.7	21
10	Pelletization of torrefied biomass with solid and liquid bio-additives. Renewable Energy, 2020, 151, 175-183.	8.9	26
11	CO2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations. Energies, 2020, 13, 5692.	3.1	103
12	On the effect of biogas composition on the H2 production by sorption enhanced steam reforming (SESR). Renewable Energy, 2020, 160, 575-583.	8.9	43
13	Development of carbon-based vacuum, temperature and concentration swing adsorption post-combustion CO2 capture processes. Chemical Engineering Journal, 2019, 375, 122002.	12.7	27
14	Evaluation of a novel multibed heat-integrated vacuum and temperature swing adsorption post-combustion CO2 capture process. Applied Energy, 2019, 250, 916-925.	10.1	35
15	Measuring heat capacity of activated carbons for CO2 capture. Journal of CO2 Utilization, 2019, 33, 148-156.	6.8	17
16	Biomass Pelletization: Contribution to Renewable Power Generation Scenarios. Biofuels and Biorefineries, 2019, , 269-294.	0.5	1
17	Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel, 2019, 251, 739-753.	6.4	94
18	Assessing the influence of biomass properties on the gasification process using multivariate data analysis. Energy Conversion and Management, 2019, 184, 649-660.	9.2	39

#	Article	IF	CITATIONS
19	Coal and biomass cofiring. , 2019, , 117-140.		20
20	Enhanced capacity to CO2 sorption in humid conditions with a K-doped biocarbon. Journal of Energy Chemistry, 2019, 34, 208-219.	12.9	10
21	Unconventional biomass fuels for steam gasification: Kinetic analysis and effect of ash composition on reactivity. Energy, 2018, 155, 426-437.	8.8	48
22	Pelletization properties of raw and torrefied pine sawdust: Effect of co-pelletization, temperature, moisture content and glycerol addition. Fuel, 2018, 215, 290-297.	6.4	41
23	Sustainable coffeeâ€based CO ₂ adsorbents: toward a greener production via hydrothermal carbonization. , 2018, 8, 309-323.		15
24	Simplistic approach for preliminary screening of potential carbon adsorbents for CO2 separation from biogas. Journal of CO2 Utilization, 2018, 28, 207-215.	6.8	17
25	Comparison of the gasification performance of multiple biomass types in a bubbling fluidized bed. Energy Conversion and Management, 2018, 176, 309-323.	9.2	66
26	Biogas purification by means of adsorption on pine sawdust-based activated carbon: Impact of water vapor. Chemical Engineering Journal, 2018, 353, 197-207.	12.7	58
27	Microalgae: Potential precursors of CO2 adsorbents. Journal of CO2 Utilization, 2018, 26, 454-464.	6.8	37
28	Adsorption-based Process Modelling for Post-combustion CO2 Capture. Energy Procedia, 2017, 114, 2353-2361.	1.8	10
29	Carbon Monoliths in Adsorption-based Post-combustion CO2 Capture. Energy Procedia, 2017, 114, 2341-2352.	1.8	19
30	Evaluating the Feasibility of a TSA Process Based on Steam Stripping in Combination with Structured Carbon Adsorbents To Capture CO ₂ from a Coal Power Plant. Energy & Fuels, 2017, 31, 9760-9775.	5.1	35
31	Adsorption Performance Indicator to Screen Carbon Adsorbents for Post-combustion CO2 Capture. Energy Procedia, 2017, 114, 2362-2371.	1.8	8
32	Kinetics of CO2 adsorption on cherry stone-based carbons in CO2/CH4 separations. Chemical Engineering Journal, 2017, 307, 249-257.	12.7	148
33	Separation of CO2 in a Solid Waste Management Incineration Facility Using Activated Carbon Derived from Pine Sawdust. Energies, 2017, 10, 827.	3.1	19
34	Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass. Energies, 2017, 10, 306.	3.1	28
35	Phenol-Formaldehyde Resin-Based Carbons for CO2 Separation at Sub-Atmospheric Pressures. Energies, 2016, 9, 189.	3.1	11
36	Water Vapor Adsorption on Biomass Based Carbons under Post-Combustion CO2 Capture Conditions: Effect of Post-Treatment. Materials, 2016, 9, 359.	2.9	25

#	Article	IF	CITATIONS
37	Experimental and Simulation Study of Adsorption in Postcombustion Conditions Using a Microporous Biochar. 2. H ₂ 0, CO ₂ , and N ₂ Adsorption. Industrial & Engineering Chemistry Research, 2016, 55, 6854-6865.	3.7	32
38	Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds. Applied Energy, 2016, 177, 579-590.	10.1	52
39	Dynamic Performance of Biomass-Based Carbons for CO ₂ /CH ₄ Separation. Approximation to a Pressure Swing Adsorption Process for Biogas Upgrading. Energy & Fuels, 2016, 30, 5005-5015.	5.1	53
40	Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil. Applied Catalysis B: Environmental, 2016, 184, 64-76.	20.2	81
41	Experimental and Simulation Study of Adsorption in Postcombustion Conditions Using a Microporous Biochar. 1. CO ₂ and N ₂ Adsorption. Industrial & Engineering Chemistry Research, 2016, 55, 3097-3112.	3.7	43
42	Adsorption performance indicators for the CO2/CH4 separation: Application to biomass-based activated carbons. Fuel Processing Technology, 2016, 142, 361-369.	7.2	81
43	Nutritional, carbon and energy evaluation of Eucalyptus nitens short rotation bioenergy plantations in northwestern Spain. IForest, 2016, 9, 303-310.	1.4	16
44	Cherryâ€stonesâ€based activated carbons as potential adsorbents for CO ₂ /CH ₄ separation: effect of the activation parameters. , 2015, 5, 812-825.		27
45	Carbon adsorbents for CO2 capture from bio-hydrogen and biogas streams: Breakthrough adsorption study. Chemical Engineering Journal, 2015, 269, 148-158.	12.7	71
46	Water vapour adsorption by a coffee-based microporous carbon: effect on CO ₂ capture. Journal of Chemical Technology and Biotechnology, 2015, 90, 1592-1600.	3.2	21
47	Green coffee based CO2 adsorbent with high performance in postcombustion conditions. Fuel, 2015, 140, 633-648.	6.4	37
48	CO 2 adsorbent pellets produced from pine sawdust: Effect of coal tar pitch addition. Applied Energy, 2015, 144, 182-192.	10.1	35
49	Grindability and combustion behavior of coal and torrefied biomass blends. Bioresource Technology, 2015, 191, 205-212.	9.6	101
50	Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity. Energy, 2015, 91, 655-662.	8.8	109
51	H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology. Catalysis Today, 2015, 242, 19-34.	4.4	44
52	H2 production by steam reforming with in situ CO2 capture of biomass-derived bio-oil. Energy Procedia, 2014, 63, 6815-6823.	1.8	7
53	Evaluation of Microporous Biochars Produced by Single-step Oxidation for Postcombustion CO2 Capture under Humid Conditions. Energy Procedia, 2014, 63, 693-702.	1.8	15
54	Towards Bio-upgrading of Biogas: Biomass Waste-based Adsorbents. Energy Procedia, 2014, 63, 6527-6533.	1.8	29

#	Article	IF	CITATIONS
55	Biomass co-firing under oxy-fuel conditions: A computational fluid dynamics modelling study and experimental validation. Fuel Processing Technology, 2014, 120, 22-33.	7.2	65
56	Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combustion and Flame, 2014, 161, 1096-1108.	5.2	174
57	Combustion of single biomass particles in air and in oxy-fuel conditions. Biomass and Bioenergy, 2014, 64, 162-174.	5.7	138
58	Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture. Applied Energy, 2014, 114, 551-562.	10.1	181
59	Multifunctional Pd/Ni–Co Catalyst for Hydrogen Production by Chemical Looping Coupled With Steam Reforming of Acetic Acid. ChemSusChem, 2014, 7, 3063-3077.	6.8	42
60	Influence of Water Vapor on CO ₂ Adsorption Using a Biomass-Based Carbon. Industrial & Engineering Chemistry Research, 2014, 53, 15488-15499.	3.7	31
61	Cyclic operation of a fixed-bed pressure and temperature swing process for CO2 capture: Experimental and statistical analysis. International Journal of Greenhouse Gas Control, 2013, 12, 35-43.	4.6	31
62	CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release. Applied Energy, 2013, 104, 653-665.	10.1	59
63	Oxy-coal combustion in an entrained flow reactor: Application ofÂspecific char and volatile combustion and radiation models for oxy-firing conditions. Energy, 2013, 62, 255-268.	8.8	44
64	Dynamic cyclic performance of phenol-formaldehyde resin-derived carbons for pre-combustion CO2 capture: An experimental study. Energy Procedia, 2013, 37, 127-133.	1.8	4
65	Ignition and NO Emissions of Coal and Biomass Blends under Different Oxy-fuel Atmospheres. Energy Procedia, 2013, 37, 1405-1412.	1.8	19
66	Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chemical Engineering Journal, 2013, 230, 456-465.	12.7	211
67	Post-combustion CO2 capture adsorbents from spent coffee grounds. Energy Procedia, 2013, 37, 134-141.	1.8	36
68	Influence of oxidation upon the CO2 capture performance of a phenolic-resin-derived carbon. Fuel Processing Technology, 2013, 110, 53-60.	7.2	40
69	Predicting Mixed-Gas Adsorption Equilibria on Activated Carbon for Precombustion CO ₂ Capture. Langmuir, 2013, 29, 6042-6052.	3.5	74
70	Response surface methodology as an efficient tool for optimizing carbon adsorbents for CO2 capture. Fuel Processing Technology, 2013, 106, 55-61.	7.2	50
71	Progress in pilot, largeâ€scale projects as an inducement for CCUS deployment. , 2013, 3, 97-98.		2
72	Ignition behavior of coal and biomass blends under oxy-firing conditions with steam additions. , 2013, 3, 397-414.		14

#	Article	IF	CITATIONS
73	Hydrogen production from food wastes and gas post-treatment by CO2 adsorption. Waste Management, 2012, 32, 60-66.	7.4	49
74	Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Applied Energy, 2012, 99, 272-279.	10.1	243
75	Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres. Energy, 2012, 48, 510-518.	8.8	86
76	Precombustion CO2 capture by means of phenol–formaldehyde resin-derived carbons: From equilibrium to dynamic conditions. Separation and Purification Technology, 2012, 98, 531-538.	7.9	20
77	Sorption enhanced catalytic steam gasification process: a direct route from lignocellulosic biomass to high purity hydrogen. Energy and Environmental Science, 2012, 5, 6358.	30.8	77
78	Effect of coâ€gasification of biomass and petroleum coke with coal on the production of gases. , 2012, 2, 304-313.		10
79	A study of oxy-coal combustion with steam addition and biomass blending by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2012, 109, 49-55.	3.6	56
80	Numerical investigation of NO emissions from an entrained flow reactor under oxy-coal conditions. Fuel Processing Technology, 2012, 93, 53-64.	7.2	17
81	Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor. Applied Energy, 2012, 91, 67-74.	10.1	97
82	Oxy-fuel combustion of coal and biomass blends. Energy, 2012, 41, 429-435.	8.8	144
83	Kinetic Parameters and Reactivity for the Steam Gasification of Coal Chars Obtained under Different Pyrolysis Temperatures and Pressures. Energy & Fuels, 2011, 25, 3574-3580.	5.1	20
84	Raw Materials, Selection, Preparation and Characterization. Green Energy and Technology, 2011, , 11-22.	0.6	0
85	Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. Journal of Materials Chemistry, 2011, 21, 5475.	6.7	302
86	Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor. Energy, 2011, 36, 5314-5319.	8.8	105
87	NO emissions in oxyâ€coal combustion with the addition of steam in an entrained flow reactor. , 2011, 1, 180-190.		38
88	CFD modelling of oxy-coal combustion in an entrained flow reactor. Fuel Processing Technology, 2011, 92, 1489-1497.	7.2	56
89	Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture. Chemical Engineering Journal, 2011, 171, 549-556.	12.7	129
90	Evaluation of ammonia modified and conventionally activated biomass based carbons as CO2 adsorbents in postcombustion conditions. Separation and Purification Technology, 2011, 80, 96-104.	7.9	93

#	Article	IF	CITATIONS
91	Doped phenol-formaldehyde resins as precursors for precombustion CO2 capture adsorbents. Energy Procedia, 2011, 4, 1222-1227.	1.8	5
92	Evaluation of the cyclic capacity of low-cost carbon adsorbents for post-combustion CO2 capture. Energy Procedia, 2011, 4, 1228-1234.	1.8	29
93	Microporous phenol–formaldehyde resin-based adsorbents for pre-combustion CO2 capture. Fuel, 2011, 90, 2064-2072.	6.4	52
94	Heterogeneous reaction mechanisms of the reduction of nitric oxide on carbon surfaces: a theoretical analysis. Theoretical Chemistry Accounts, 2010, 127, 95-108.	1.4	21
95	Influence of storage time on the quality and combustion behaviour of pine woodchips. Energy, 2010, 35, 3066-3071.	8.8	47
96	Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology, 2010, 71, 102-106.	7.9	185
97	On the limits of CO2 capture capacity of carbons. Separation and Purification Technology, 2010, 74, 225-229.	7.9	117
98	Intrinsic char reactivity of plastic waste (PET) during CO2 gasification. Fuel Processing Technology, 2010, 91, 1776-1781.	7.2	29
99	Application of response surface methodology to assess the combined effect of operating variables on high-pressure coal gasification for H2-rich gas production. International Journal of Hydrogen Energy, 2010, 35, 1191-1204.	7.1	72
100	Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresource Technology, 2010, 101, 5601-5608.	9.6	445
101	Ammoxidation of carbon materials for CO2 capture. Applied Surface Science, 2010, 256, 6843-6849.	6.1	86
102	Kinetic models comparison for non-isothermal steam gasification of coal–biomass blend chars. Chemical Engineering Journal, 2010, 161, 276-284.	12.7	108
103	Post-combustion CO2 capture with a commercial activated carbon: Comparison of different regeneration strategies. Chemical Engineering Journal, 2010, 163, 41-47.	12.7	292
104	The importance of thermal behaviour and petrographic composition for understanding the characteristics of a Portuguese perhydrous Jurassic coal. International Journal of Coal Geology, 2010, 84, 237-247.	5.0	11
105	Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H2-rich gas production. Bioresource Technology, 2010, 101, 3230-3235.	9.6	131
106	Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresource Technology, 2010, 101, 8859-8867.	9.6	186
107	Effect of the Pressure and Temperature of Devolatilization on the Morphology and Steam Gasification Reactivity of Coal Chars. Energy & amp; Fuels, 2010, 24, 5586-5595.	5.1	29
108	Development of low-cost biomass-based adsorbents for postcombustion CO2 capture. Fuel, 2009, 88, 2442-2447.	6.4	187

#	Article	IF	CITATIONS
109	High-pressure co-gasification of coal with biomass and petroleum coke. Fuel Processing Technology, 2009, 90, 926-932.	7.2	173
110	High-pressure gasification reactivity of biomass chars produced at different temperatures. Journal of Analytical and Applied Pyrolysis, 2009, 85, 287-293.	5.5	108
111	Developing activated carbon adsorbents for pre-combustion CO2 capture. Energy Procedia, 2009, 1, 599-605.	1.8	44
112	A comparison of two methods for producing CO2 capture adsorbents. Energy Procedia, 2009, 1, 1107-1113.	1.8	65
113	Effect of mesoporosity on specific capacitance of carbons. Carbon, 2009, 47, 1598-1604.	10.3	65
114	Different Approaches for the Development of Low-Cost CO2 Adsorbents. Journal of Environmental Engineering, ASCE, 2009, 135, 426-432.	1.4	125
115	Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture. Journal of Thermal Analysis and Calorimetry, 2008, 92, 601-606.	3.6	143
116	Kinetic models comparison for steam gasification of different nature fuel chars. Journal of Thermal Analysis and Calorimetry, 2008, 91, 779-786.	3.6	117
117	Surface modification of activated carbons for CO2 capture. Applied Surface Science, 2008, 254, 7165-7172.	6.1	417
118	Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion. Fuel, 2008, 87, 2753-2759.	6.4	141
119	Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 2008, 89, 169-175.	7.2	634
120	A comparison of characterization methods based on N2 and CO2 adsorption for the assessment of the pore size distribution of carbons. Studies in Surface Science and Catalysis, 2007, 160, 319-326.	1.5	9
121	Removal of naphthalene from aqueous solution on chemically modified activated carbons. Water Research, 2007, 41, 333-340.	11.3	76
122	Effects of activated carbon properties on the adsorption of naphthalene from aqueous solutions. Applied Surface Science, 2007, 253, 5741-5746.	6.1	58
123	On the mechanism of reactive adsorption of dibenzothiophene on organic waste derived carbons. Applied Surface Science, 2007, 253, 5899-5903.	6.1	45
124	Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms. Fuel, 2007, 86, 41-49.	6.4	45
125	Ignition characteristics of coal blends in an entrained flow furnace. Fuel, 2007, 86, 2076-2080.	6.4	53
126	CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 2007, 86, 2204-2212.	6.4	451

8

#	Article	IF	CITATIONS
127	Changes in coal char reactivity and texture during combustion in an entrained flow reactor. Journal of Thermal Analysis and Calorimetry, 2007, 90, 859-863.	3.6	8
128	Structural Changes in Polyethylene Terephthalate (PET) Waste Materials Caused by Pyrolysis and CO2 Activation. Adsorption Science and Technology, 2006, 24, 439-450.	3.2	21
129	Geochemistry, mineralogy and technological properties of coals from Rio Maior (Portugal) and Peñarroya (Spain) basins. International Journal of Coal Geology, 2006, 67, 171-190.	5.0	40
130	Ignition behaviour of different rank coals in an entrained flow reactor. Fuel, 2005, 84, 2172-2177.	6.4	51
131	Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends. Fuel, 2005, 84, 2196-2203.	6.4	97
132	Heterogeneous reduction of nitric oxide on synthetic coal chars. Fuel, 2005, 84, 2275-2279.	6.4	31
133	Surface modification of low cost carbons for their application in the environmental protection. Applied Surface Science, 2005, 252, 619-624.	6.1	122
134	Pyrolysis of activated carbons exhausted with organic compounds. Journal of Analytical and Applied Pyrolysis, 2005, 74, 518-524.	5.5	36
135	Evaluation of the combustion behaviour of perhydrous coals by thermal analysis. Journal of Thermal Analysis and Calorimetry, 2005, 81, 333-337.	3.6	9
136	Use of Nitrogen Stable Isotope Analysis To Understand Char Nitrogen Evolution during the Fluidized-Bed Co-combustion of Coal and Sewage Sludge. Energy & Fuels, 2005, 19, 485-488.	5.1	7
137	STUDY OF THE EVOLUTION OF NITROGEN COMPOUNDS DURING COAL DEVOLATILIZATION. Clean Air, 2005, 6, 393-408.	0.0	1
138	NOx EMISSIONS AND COMBUSTIBILITY CHARACTERISTICS OF COAL BLENDS. Clean Air, 2005, 6, 83-97.	0.0	1
139	A STUDY OF THE HETEROGENEOUS REDUCTION OF NO ON BITUMINOUS COAL CHARS. International Journal of Energy for A Clean Environment, 2004, 5, 18.	1.1	0
140	Relationship between structure and reactivity of carbonaceous materials. Journal of Thermal Analysis and Calorimetry, 2004, 76, 593-602.	3.6	39
141	A TG/DTA study on the effect of coal blending on ignition behaviour. Journal of Thermal Analysis and Calorimetry, 2004, 76, 603-614.	3.6	74
142	Supercritical gas extracts from low-quality coals: on the search of new precursors for carbon materials. Fuel Processing Technology, 2004, 86, 205-222.	7.2	10
143	Effects of oxidative treatments with air and CO2 on vapour grown carbon nanofibres (VGCNFs) produced at industrial scale. Thermochimica Acta, 2004, 423, 99-106.	2.7	19
144	Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal. Journal of Analytical and Applied Pyrolysis, 2004, 71, 747-763.	5.5	105

#	Article	IF	CITATIONS
145	High value carbon materials from PET recycling. Applied Surface Science, 2004, 238, 304-308.	6.1	61
146	Surface characterisation of synthetic coal chars made from model compounds. Carbon, 2004, 42, 1345-1350.	10.3	15
147	Supercritical gas extracts from low-quality coals: on the search of new precursors for carbon materials. Fuel Processing Technology, 2004, 86, 205-205.	7.2	0
148	Textural development and hydrogen adsorption of carbon materials from PET waste. Journal of Alloys and Compounds, 2004, 379, 280-289.	5.5	66
149	Materiales carbonosos obtenidos a partir del reciclado de PET. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 547-549.	1.9	5
150	Comparison between the reactivity of coal and synthetic coal modelsâ ⁺ . Fuel, 2003, 82, 2001-2006.	6.4	26
151	Combustion behaviour of ultra clean coal obtained by chemical demineralisation. Fuel, 2003, 82, 2145-2151.	6.4	33
152	Thermal behaviour during the pyrolysis of low rank perhydrous coals. Journal of Analytical and Applied Pyrolysis, 2003, 68-69, 371-385.	5.5	179
153	Curing Temperature Effect on Mechanical Strength of Smokeless Fuel Briquettes Prepared with Humates. Energy & Fuels, 2003, 17, 419-423.	5.1	5
154	Nitric Oxide Reduction in Coal Combustion:Â Role of Char Surface Complexes in Heterogeneous Reactions. Environmental Science & Technology, 2002, 36, 5498-5503.	10.0	54
155	Active surface area of carbon materials determined by different methods. Studies in Surface Science and Catalysis, 2002, 144, 209-216.	1.5	3
156	Functionalized glycidyl methacrylate based polymers as stationary phases for protein retention. Separation and Purification Technology, 2002, 27, 1-10.	7.9	13
157	Thermogravimetric–mass spectrometric study on the evolution of nitrogen compounds during coal devolatilisation. Journal of Analytical and Applied Pyrolysis, 2002, 65, 57-70.	5.5	14
158	Influence of char structure on reactivity and nitric oxide emissions. Fuel Processing Technology, 2002, 77-78, 103-109.	7.2	28
159	Coal structure and reactivity changes induced by chemical demineralisation. Fuel Processing Technology, 2002, 79, 273-279.	7.2	72
160	Modification of combustion behaviour and NO emissions by coal blending. Fuel Processing Technology, 2002, 77-78, 111-117.	7.2	46
161	Modelling of NO formation in the combustion of coal blends. Fuel, 2002, 81, 627-636.	6.4	42
162	A comparison of ASA values determined by different methods. Carbon, 2002, 40, 1381-1383.	10.3	8

#	Article	IF	CITATIONS
163	A comparison of different methods for predicting coal devolatilisation kinetics. Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 685-701.	5.5	119
164	Effects of thermal treatment on the composition and properties of air-blown anthracene oils. Fuel, 2001, 80, 1229-1238.	6.4	17
165	Simultaneous thermogravimetric–mass spectrometric study on the pyrolysis behaviour of different rank coals. Journal of Analytical and Applied Pyrolysis, 1999, 50, 31-46.	5.5	189
166	Modelling NOx formation in coal particle combustion at high temperature: an investigation of the devolatilisation kinetic factors. Fuel, 1999, 78, 1171-1179.	6.4	70
167	Textural properties in density-separated coal fractions. Fuel, 1999, 78, 1631-1637.	6.4	10
168	The effect of the textural properties of bituminous coal chars on NO emissions. Fuel, 1999, 78, 1779-1785.	6.4	36
169	Effect of the grinding behaviour of coal blends on coal utilisation for combustion. Powder Technology, 1999, 105, 351-356.	4.2	47
170	Biodesulfurization of Coals of Different Rank:Â Effect on Combustion Behavior. Environmental Science & Technology, 1999, 33, 476-481.	10.0	9
171	Development of macroporosity in activated carbons by effect of coal preoxidation and burn-off. Fuel, 1998, 77, 625-630.	6.4	15
172	Influence of biological desulphurisation on coal combustion performance. Fuel Processing Technology, 1997, 52, 165-173.	7.2	16
173	Sulfur removal by fine coal cleaning processes. Fuel, 1997, 76, 1187-1194.	6.4	40
174	A study of the self-heating of fresh and oxidized coals by differential thermal analysis. Thermochimica Acta, 1996, 279, 93-101.	2.7	64
175	Coal characterisation strategy for physical desulphurisation processes. Coal Science and Technology, 1995, , 1545-1548.	0.0	0
176	Attrition of coal ash particles in a fluidized bed. Powder Technology, 1991, 66, 41-46.	4.2	52
177	Prediction of attrition in a continuous fluid-bed system. Powder Technology, 1991, 67, 291-293.	4.2	8
178	Changes in textural properties of limestone and dolomite during calcination. Thermochimica Acta, 1991, 179, 125-134.	2.7	18
179	Prediction of combustion efficiency in a fluidized bed combustor by statistical experimental design. Fuel, 1991, 70, 861-864.	6.4	3
180	SURFACE AREA AND PORE SIZE CHANGES DURING SINTERING OF CALCIUM OXIDE PARTICLES. Chemical Engineering Communications, 1991, 109, 73-88.	2.6	54

#	Article	IF	CITATIONS
181	Kinetic study of the reaction of a metallurgical coke with CO2. Solid State Ionics, 1990, 38, 75-80.	2.7	2