Joseph S Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7364875/publications.pdf

Version: 2024-02-01

309 64,135 111 243
papers citations h-index g-index

328 328 328 28935
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Obesity and Metabolic Syndrome in Circadian <i>Clock</i> Mutant Mice. Science, 2005, 308, 1043-1045.	12.6	2,181
2	Coordinated Transcription of Key Pathways in the Mouse by the Circadian Clock. Cell, 2002, 109, 307-320.	28.9	2,099
3	PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5339-5346.	7.1	2,032
4	Role of the CLOCK Protein in the Mammalian Circadian Mechanism. Science, 1998, 280, 1564-1569.	12.6	1,769
5	Transcriptional architecture of the mammalian circadian clock. Nature Reviews Genetics, 2017, 18, 164-179.	16.3	1,766
6	Central and Peripheral Circadian Clocks in Mammals. Annual Review of Neuroscience, 2012, 35, 445-462.	10.7	1,741
7	Circadian Integration of Metabolism and Energetics. Science, 2010, 330, 1349-1354.	12.6	1,596
8	Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science, 1994, 264, 719-725.	12.6	1,507
9	Molecular components of the mammalian circadian clock. Human Molecular Genetics, 2006, 15, R271-R277.	2.9	1,384
10	Mop3 Is an Essential Component of the Master Circadian Pacemaker in Mammals. Cell, 2000, 103, 1009-1017.	28.9	1,380
11	The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature Reviews Genetics, 2008, 9, 764-775.	16.3	1,357
12	Positional Cloning of the Mouse Circadian Gene. Cell, 1997, 89, 641-653.	28.9	1,298
13	Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature, 2010, 466, 627-631.	27.8	1,261
14	Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals. Science, 2012, 338, 349-354.	12.6	1,194
15	Molecular architecture of the mammalian circadian clock. Trends in Cell Biology, 2014, 24, 90-99.	7.9	1,084
16	Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annual Review of Physiology, 2010, 72, 551-577.	13.1	1,056
17	Circadian Clock Feedback Cycle Through NAMPT-Mediated NAD ⁺ Biosynthesis. Science, 2009, 324, 651-654.	12.6	992
18	The Meter of Metabolism. Cell, 2008, 134, 728-742.	28.9	873

#	Article	IF	Citations
19	MAMMALIAN CIRCADIAN BIOLOGY: Elucidating Genome-Wide Levels of Temporal Organization. Annual Review of Genomics and Human Genetics, 2004, 5, 407-441.	6.2	830
20	Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science, 1993, 260, 238-241.	12.6	801
21	Positional Syntenic Cloning and Functional Characterization of the Mammalian Circadian Mutation tau. Science, 2000, 288, 483-491.	12.6	800
22	Closing the Circadian Loop: CLOCK-Induced Transcription of Its Own Inhibitors per and tim. Science, 1998, 280, 1599-1603.	12.6	784
23	Temperature as a Universal Resetting Cue for Mammalian Circadian Oscillators. Science, 2010, 330, 379-385.	12.6	745
24	Mania-like behavior induced by disruption of <i>CLOCK</i> Sciences of the United States of America, 2007, 104, 6406-6411.	7.1	720
25	Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network. Cell, 2007, 129, 605-616.	28.9	676
26	Functional Identification of the Mouse Circadian Clock Gene by Transgenic BAC Rescue. Cell, 1997, 89, 655-667.	28.9	642
27	Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 2012, 485, 62-68.	27.8	638
28	Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12114-12119.	7.1	637
29	Bioluminescence Imaging of Individual Fibroblasts Reveals Persistent, Independently Phased Circadian Rhythms of Clock Gene Expression. Current Biology, 2004, 14, 2289-2295.	3.9	614
30	System-Driven and Oscillator-Dependent Circadian Transcription in Mice with a Conditionally Active Liver Clock. PLoS Biology, 2007, 5, e34.	5.6	584
31	Molecular Components of the Mammalian Circadian Clock. Handbook of Experimental Pharmacology, 2013, , 3-27.	1.8	544
32	A CLOCK Polymorphism Associated with Human Diurnal Preference. Sleep, 1998, 21, 569-576.	1.1	540
33	Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature, 1984, 308, 186-188.	27.8	516
34	Molecular Genetics of Circadian Rhythms in Mammals. Annual Review of Neuroscience, 2000, 23, 713-742.	10.7	503
35	Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron, 1990, 5, 127-134.	8.1	500
36	Circadian Mutant Overtime Reveals F-box Protein FBXL3 Regulation of Cryptochrome and Period Gene Expression. Cell, 2007, 129, 1011-1023.	28.9	487

#	Article	IF	CITATIONS
37	Genetics of Circadian Rhythms in Mammalian Model Organisms. Advances in Genetics, 2011, 74, 175-230.	1.8	468
38	Regulation of dopaminergic transmission and cocaine reward by the <i>Clock</i> gene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9377-9381.	7.1	453
39	Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3342-3347.	7.1	439
40	FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nature Medicine, 2013, 19, 1147-1152.	30.7	430
41	cAMP-Dependent Signaling as a Core Component of the Mammalian Circadian Pacemaker. Science, 2008, 320, 949-953.	12.6	381
42	Role of Mouse Cryptochrome Blue-Light Photoreceptor in Circadian Photoresponses., 1998, 282, 1490-1494.		380
43	The Small Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome. Cell Metabolism, 2016, 23, 610-621.	16.2	380
44	The Circadian <i>Clock</i> Mutation Alters Sleep Homeostasis in the Mouse. Journal of Neuroscience, 2000, 20, 8138-8143.	3.6	355
45	T _H 17 Cell Differentiation Is Regulated by the Circadian Clock. Science, 2013, 342, 727-730.	12.6	355
46	Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nature Neuroscience, 1998, 1, 708-713.	14.8	347
47	Setting Clock Speed in Mammals: The CK1É> tau Mutation in Mice Accelerates Circadian Pacemakers by Selectively Destabilizing PERIOD Proteins. Neuron, 2008, 58, 78-88.	8.1	342
48	Mammalian Circadian Autoregulatory Loop. Neuron, 1998, 21, 1101-1113.	8.1	333
49	Circadian Clock Mutation Disrupts Estrous Cyclicity and Maintenance of Pregnancy. Current Biology, 2004, 14, 1367-1373.	3.9	302
50	Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiological Genomics, 2007, 31, 86-95.	2.3	300
51	CLOCK and BMAL1 regulate <i>MyoD</i> and are necessary for maintenance of skeletal muscle phenotype and function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19090-19095.	7.1	299
52	Genomics of circadian rhythms in health and disease. Genome Medicine, 2019, 11, 82.	8.2	296
53	Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus) Journal of Physiology, 1991, 439, 115-145.	2.9	290
54	Regulation of circadian rhythmicity. Science, 1982, 217, 1104-1111.	12.6	288

#	Article	IF	CITATIONS
55	Stopping Time: The Genetics of Fly and Mouse Circadian Clocks. Annual Review of Neuroscience, 2001, 24, 1091-1119.	10.7	287
56	Competing E3ÂUbiquitin Ligases Govern Circadian Periodicity by Degradation of CRY in Nucleus and Cytoplasm. Cell, 2013, 152, 1091-1105.	28.9	280
57	Dissecting the Functions of the Mammalian Clock Protein BMAL1 by Tissue-Specific Rescue in Mice. Science, 2006, 314, 1304-1308.	12.6	274
58	A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2608-2613.	7.1	272
59	Crystal Structure of the Heterodimeric CLOCK:BMAL1 Transcriptional Activator Complex. Science, 2012, 337, 189-194.	12.6	270
60	Genetics of the Mammalian Circadian System: Photic Entrainment, Circadian Pacemaker Mechanisms, and Posttranslational Regulation. Annual Review of Genetics, 2000, 34, 533-562.	7.6	268
61	Forward-genetics analysis of sleep in randomly mutagenized mice. Nature, 2016, 539, 378-383.	27.8	266
62	Circadian Rhythm Generation and Entrainment in Astrocytes. Journal of Neuroscience, 2005, 25, 404-408.	3.6	248
63	Medicine in the Fourth Dimension. Cell Metabolism, 2019, 30, 238-250.	16.2	245
64	Circadian clock genes and the transcriptional architecture of the clock mechanism. Journal of Molecular Endocrinology, 2019, 63, R93-R102.	2.5	243
65	CKIεĴÍ-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15744-15749.	7.1	239
66	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
67	Forward and Reverse Genetic Approaches to Behavior in the Mouse. Science, 1994, 264, 1724-1733.	12.6	231
68	From The Cover: Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3407-3412.	7.1	231
69	Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 2319-2322.	7.1	226
70	BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nature Neuroscience, 2006, 9, 1041-1049.	14.8	225
71	Regulation of jun-B messenger RNA and AP-1 activity by light and a circadian clock. Science, 1992, 255, 1581-1584.	12.6	213
72	Genome-Wide Epistatic Interaction Analysis Reveals Complex Genetic Determinants of Circadian Behavior in Mice. Genome Research, 2001, 11, 959-980.	5.5	211

#	Article	IF	Citations
73	Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11758-11763.	7.1	211
74	The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9327-9332.	7.1	209
75	Use of 2-[125I]iodomelatonin to characterize melatonin binding sites in chicken retina Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 3916-3920.	7.1	208
76	Rhythmic PER Abundance Defines a Critical Nodal Point for Negative Feedback within the Circadian Clock Mechanism. Molecular Cell, 2009, 36, 417-430.	9.7	207
77	Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biology, 2003, 4, R61.	9.6	204
78	Targeted Deletion of the Vgf Gene Indicates that the Encoded Secretory Peptide Precursor Plays a Novel Role in the Regulation of Energy Balance. Neuron, 1999, 23, 537-548.	8.1	201
79	C57BL/6N Mutation in <i>Cytoplasmic FMRP interacting protein 2</i> Regulates Cocaine Response. Science, 2013, 342, 1508-1512.	12.6	198
80	Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends in Neurosciences, 2011, 34, 349-358.	8.6	195
81	Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 101-106.	7.1	195
82	The Genomic Landscape and Pharmacogenomic Interactions of Clock Genes in Cancer Chronotherapy. Cell Systems, 2018, 6, 314-328.e2.	6.2	183
83	Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an Automated Feeder System. Cell Metabolism, 2017, 26, 267-277.e2.	16.2	176
84	Emergence of Noise-Induced Oscillations in the Central Circadian Pacemaker. PLoS Biology, 2010, 8, e1000513.	5.6	172
85	Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature, 2021, 594, 535-540.	27.8	171
86	Molecular components of the circadian clock in mammals. Diabetes, Obesity and Metabolism, 2015, 17, 6-11.	4.4	170
87	Circadian regulation of lodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron, 1993, 10, 579-584.	8.1	169
88	Real-Time Luminescence Reporting of Circadian Gene Expression in Mammals. Methods in Enzymology, 2005, 393, 288-301.	1.0	167
89	Pineal opsin: a nonvisual opsin expressed in chick pineal. Science, 1995, 267, 1502-1506.	12.6	159
90	Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1957-R1964.	1.8	158

#	Article	IF	CITATIONS
91	Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science, 2022, 376, 1192-1202.	12.6	157
92	The Mouse <i>Clock</i> Mutation Behaves as an Antimorph and Maps Within the <i>W19H</i> Deletion, Distal of <i>Kit</i> . Genetics, 1997, 146, 1049-1060.	2.9	156
93	Neuromedin S-Producing Neurons Act as Essential Pacemakers in the Suprachiasmatic Nucleus to Couple Clock Neurons and Dictate Circadian Rhythms. Neuron, 2015, 85, 1086-1102.	8.1	148
94	Circadian Clock Genes Contribute to the Regulation of Hair Follicle Cycling. PLoS Genetics, 2009, 5, e1000573.	3. 5	146
95	Aging Alters Circadian and Light-Induced Expression of Clock Genes in Golden Hamsters. Journal of Biological Rhythms, 2003, 18, 159-169.	2.6	143
96	Circadian clock in cell culture: I. Oscillation of melatonin release from dissociated chick pineal cells in flow-through microcarrier culture. Journal of Neuroscience, 1988, 8, 12-21.	3.6	141
97	Light, immediate-early genes, and circadian rhythms. Behavior Genetics, 1996, 26, 221-240.	2.1	140
98	Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. ELife, 2014, 3, .	6.0	140
99	The Physiology of Circadian Pacemakers. Annual Review of Physiology, 1978, 40, 501-526.	13.1	139
100	Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. Journal of Neuroscience, 1982, 2, 815-828.	3.6	138
101	The orphan receptor Rev-erbî± gene is a target of the circadian clock pacemaker. Journal of Molecular Endocrinology, 2004, 33, 585-608.	2.5	138
102	Familial Advanced Sleep Phase Syndrome. Archives of Neurology, 2001, 58, 1089.	4.5	137
103	2-[¹²⁵ 1]lodomelatonin Binding Sites in Hamster Brain Membranes: Pharmacological Characteristics and Regional Distribution*. Endocrinology, 1988, 122, 1825-1833.	2.8	136
104	Chimera Analysis of the Clock Mutation in Mice Shows that Complex Cellular Integration Determines Circadian Behavior. Cell, 2001, 105, 25-42.	28.9	135
105	Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 489-494.	7.1	135
106	The Circadian Clock in Skin. Journal of Biological Rhythms, 2015, 30, 163-182.	2.6	135
107	Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, Fos expression and creb phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience, 1996, 70, 951-961.	2.3	132
108	Characteristics and Autoradiographic Localization of 2-[125I]lodomelatonin Binding Sites in Djungarian Hamster Brain*. Endocrinology, 1989, 125, 1011-1018.	2.8	129

#	Article	IF	Citations
109	Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mammalian Genome, 2004, 15, 648-662.	2.2	129
110	Functional Annotation of Mouse Genome Sequences. Science, 2001, 291, 1251-1255.	12.6	125
111	Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nature Communications, 2019, 10, 3923.	12.8	123
112	The Avian Pineal, a Vertebrate Model System of the Circadian Oscillator: Cellular Regulation of Circadian Rhythms by Light, Second Messengers, and Macromolecular Synthesis., 1989, 45, 279-352.		121
113	Development and Therapeutic Potential of Small-Molecule Modulators of Circadian Systems. Annual Review of Pharmacology and Toxicology, 2018, 58, 231-252.	9.4	119
114	InÂVivo Single-Cell Detection of Metabolic Oscillations in Stem Cells. Cell Reports, 2015, 10, 1-7.	6.4	118
115	Future of genetics of mood disorders research. Biological Psychiatry, 2002, 52, 457-477.	1.3	116
116	Molecular Cloning and Characterization of the HumanCLOCKGene: Expression in the Suprachiasmatic Nuclei. Genomics, 1999, 57, 189-200.	2.9	115
117	Finding New Clock Components: Past and Future. Journal of Biological Rhythms, 2004, 19, 339-347.	2.6	114
118	Bmal1 function in skeletal muscle regulates sleep. ELife, 2017, 6, .	6.0	106
119	Importance of circadian timing for aging and longevity. Nature Communications, 2021, 12, 2862.	12.8	106
120	Circadian clock in cell culture: II. In vitro photic entrainment of melatonin oscillation from dissociated chick pineal cells. Journal of Neuroscience, 1988, 8, 22-30.	3.6	105
121	The Basic Helix-Loop-Helix-PAS Protein MOP9 Is a Brain-Specific Heterodimeric Partner of Circadian and Hypoxia Factors. Journal of Neuroscience, 2000, 20, RC83-RC83.	3.6	104
122	Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer–enhancer interactions. Genes and Development, 2019, 33, 294-309.	5.9	103
123	Vasopressin Regulation of the Proestrous Luteinizing Hormone Surge in Wild-Type and Clock Mutant Mice1. Biology of Reproduction, 2006, 75, 778-784.	2.7	101
124	Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. Cell Reports, 2018, 25, 1-9.e5.	6.4	100
125	Temperature compensation and temperature entrainment of the chick pineal cell circadian clock. Journal of Neuroscience, 1995, 15, 5681-5692.	3.6	99
126	Why the neuroendocrine system is important in aging processes. Experimental Gerontology, 1987, 22, 1-15.	2.8	98

#	Article	IF	Citations
127	Brain-Specific Rescue of Clock Reveals System-Driven Transcriptional Rhythms in Peripheral Tissue. PLoS Genetics, 2012, 8, e1002835.	3.5	97
128	The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock. Cell, 2021, 184, 4154-4167.e12.	28.9	97
129	Small molecule modifiers of circadian clocks. Cellular and Molecular Life Sciences, 2013, 70, 2985-2998.	5.4	95
130	Central Circadian Control of Female Reproductive Function. Frontiers in Endocrinology, 2013, 4, 195.	3.5	93
131	Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1560-1565.	7.1	92
132	Transcriptional Basis for Rhythmic Control of Hunger and Metabolism within the AgRP Neuron. Cell Metabolism, 2019, 29, 1078-1091.e5.	16.2	91
133	Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19449-19457.	7.1	91
134	Gene Set Enrichment in eQTL Data Identifies Novel Annotations and Pathway Regulators. PLoS Genetics, 2008, 4, e1000070.	3.5	90
135	Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. ELife, 2014, 3, e03674.	6.0	90
136	Light-induced decrease of serotonin N-acetyltransferase activity and melatonin in the chicken pineal gland and retina. Brain Research, 1983, 266, 287-293.	2.2	89
137	Circadian-clock regulation of gene expression. Current Opinion in Genetics and Development, 1993, 3, 301-309.	3.3	89
138	Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. Genome Research, $2006,16,436-440.$	5 . 5	89
139	Searching for Genes Underlying Behavior: Lessons from Circadian Rhythms. Science, 2008, 322, 909-912.	12.6	89
140	Genetics and Neurobiology of Circadian Clocks in Mammals. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 251-259.	1.1	88
141	HDAC5 and Its Target Gene, Npas4, Function in the Nucleus Accumbens to Regulate Cocaine-Conditioned Behaviors. Neuron, 2017, 96, 130-144.e6.	8.1	88
142	Comparison of visual sensitivity for suppression of pineal melatonin and circadian phase-shifting in the golden hamster. Brain Research, 1991, 554, 272-277.	2.2	85
143	Adenylate cyclase activation shifts the phase of a circadian pacemaker. Science, 1983, 220, 82-84.	12.6	84
144	Phosphorylation of LSD1 by PKCα Is Crucial for Circadian Rhythmicity and Phase Resetting. Molecular Cell, 2014, 53, 791-805.	9.7	84

#	Article	IF	Citations
145	Circadian clock genes are ticking. Science, 1992, 258, 238-240.	12.6	81
146	Implementing Large-Scale ENU Mutagenesis Screens in North America. Genetica, 2004, 122, 51-64.	1.1	81
147	Circadian rhythms: molecular basis of the clock. Current Opinion in Genetics and Development, 1998, 8, 595-602.	3.3	79
148	Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. Cell Reports, 2017, 20, 1061-1072.	6.4	79
149	Large-scale mutagenesis of the mouse to understand the genetic bases of nervous system structure and function. Molecular Brain Research, 2004, 132, 105-115.	2.3	77
150	Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E754-61.	7.1	77
151	Lithium Ameliorates Nucleus Accumbens Phase-Signaling Dysfunction in a Genetic Mouse Model of Mania. Journal of Neuroscience, 2010, 30, 16314-16323.	3.6	76
152	Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18757-18762.	7.1	75
153	Sleeping sickness is a circadian disorder. Nature Communications, 2018, 9, 62.	12.8	7 5
154	Automated Measurement of Mouse Freezing Behavior and its Use for Quantitative Trait Locus Analysis of Contextual Fear Conditioning in (BALB/cJ × C57BL/6J)F ₂ Mice. Learning and Memory, 1998, 5, 391-403.	1.3	75
155	An evolutionary hotspot defines functional differences between CRYPTOCHROMES. Nature Communications, 2018, 9, 1138.	12.8	72
156	Multiple redundant circadian oscillators within the isolated avian pineal gland. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1984, 154, 435-440.	1.6	71
157	<i>>Period2</i> 3′-UTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8855-E8864.	7.1	71
158	Circadian Clock Genes as Modulators of Sensitivity to Genotoxic Stress. Cell Cycle, 2005, 4, 901-907.	2.6	68
159	Genomewide Association Analysis in Diverse Inbred Mice: Power and Population Structure. Genetics, 2007, 176, 675-683.	2.9	68
160	Trypanosoma brucei metabolism is under circadian control. Nature Microbiology, 2017, 2, 17032.	13.3	68
161	Anisomycin, an inhibitor of protein synthesis, perturbs the phase of a mammalian circadian pacemaker. Brain Research, 1987, 405, 199-203.	2.2	66
162	Phosphorylation of the Cryptochrome 1 C-terminal Tail Regulates Circadian Period Length. Journal of Biological Chemistry, 2013, 288, 35277-35286.	3.4	66

#	Article	IF	CITATIONS
163	From The Cover: The gene for soluble N-ethylmaleimide sensitive factor attachment protein \hat{A} is mutated in hydrocephaly with hop gait (hyh) mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1748-1753.	7.1	65
164	The malaria parasite has an intrinsic clock. Science, 2020, 368, 746-753.	12.6	65
165	Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice. ELife, 2013, 2, e00426.	6.0	63
166	Light-dependent regulation of dopamine receptors in mammalian retina. Brain Research, 1985, 335, 321-325.	2.2	62
167	Generation, identification and functional characterization of thenob4mutation ofGrm6in the mouse. Visual Neuroscience, 2007, 24, 111-123.	1.0	61
168	Twenty-four hour oscillation of cAMP in chick pineal cells: Role of cAMP in the acute and circadian regulation of melatonin production. Neuron, 1989, 3, 609-619.	8.1	60
169	Locomotor response to an open field during C57BL/6J active and inactive phases. Physiology and Behavior, 2000, 69, 269-275.	2.1	60
170	Methods to Record Circadian Rhythm Wheel Running Activity in Mice. Methods in Enzymology, 2005, 393, 230-239.	1.0	60
171	Circadian rhythms: From gene expression to behavior. Current Opinion in Neurobiology, 1991, 1, 556-561.	4.2	59
172	Molecular Approaches to Understanding Circadian Oscillations. Annual Review of Physiology, 1993, 55, 729-753.	13.1	59
173	Interpretation of the mouse electroretinogram. Documenta Ophthalmologica, 2007, 115, 127-136.	2.2	59
174	Transcriptional program of Kpna2/Importin-α2 regulates cellular differentiation-coupled circadian clock development in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5039-48.	7.1	59
175	A cholinergic antagonist, mecamylamine, blocks the phase-shifting effects of light on the circadian rhythm of locomotor activity in the golden hamster. Brain Research, 1987, 403, 308-312.	2.2	56
176	Loss of Circadian Photoentrainment and Abnormal Retinal Electrophysiology inMath5Mutant Mice. , 2005, 46, 2540.		56
177	Effect of circadian phase on context and cued fear conditioning in C57BL/6J mice. Learning and Behavior, 2001, 29, 133-142.	3.4	55
178	Cycling Transcriptional Networks Optimize Energy Utilization on a Genome Scale. Cell Reports, 2015, 13, 1868-1880.	6.4	55
179	Cyclic guanosine 3':5'-monophosphate mimics the effects of light on a circadian pacemaker in the eye of aplysia. Journal of Neuroscience, 1984, 4, 2466-2471.	3.6	54
180	Alpha-2 adrenergic regulation of melatonin release in chick pineal cell cultures. Journal of Neuroscience, 1987, 7, 3665-3674.	3.6	54

#	Article	IF	CITATIONS
181	Inducible and Reversible Clock Gene Expression in Brain Using the tTA System for the Study of Circadian Behavior. PLoS Genetics, 2007, 3, e33.	3.5	54
182	Dual-Color Single-Cell Imaging of the Suprachiasmatic Nucleus Reveals a Circadian Role in Network Synchrony. Neuron, 2020, 108, 164-179.e7.	8.1	54
183	Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality. Behavioural Brain Research, 2006, 169, 220-230.	2.2	53
184	Genetic suppression of the circadian Clock mutation by the melatonin biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8399-8403.	7.1	52
185	Measurement of hypocretin/orexin content in the mouse brain using an enzyme immunoassay: the effect of circadian time, age and genetic background. Peptides, 2002, 23, 2203-2211.	2.4	50
186	Depressive-like behavior and stress reactivity are independent traits in a Wistar Kyoto \tilde{A} — Fisher 344 cross. Molecular Psychiatry, 2003, 8, 423-433.	7.9	50
187	Genetic analysis of the stress-responsive adrenocortical axis. Physiological Genomics, 2006, 27, 362-369.	2.3	50
188	Effects of age on circadian rhythms are similar in wild-type and heterozygous Clock mutant mice. Neurobiology of Aging, 2004, 25, 517-523.	3.1	48
189	Large-scale mutagenesis and phenotypic screens for the nervous system and behavior in mice. Trends in Neurosciences, 2006, 29, 233-240.	8.6	48
190	Vasoactive Intestinal Polypeptide (VIP)-Expressing Neurons in the Suprachiasmatic Nucleus Provide Sparse GABAergic Outputs to Local Neurons with Circadian Regulation Occurring Distal to the Opening of Postsynaptic GABA _A Ionotropic Receptors. Journal of Neuroscience, 2015, 35, 1905-1920.	3.6	48
191	Molecular Architecture of the Circadian Clock in Mammals. Research and Perspectives in Endocrine Interactions, 2016, , 13-24.	0.2	48
192	NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron, 2021, 109, 3268-3282.e6.	8.1	46
193	Effects of aging on lens transmittance and retinal input to the suprachiasmatic nucleus in golden hamsters. Neuroscience Letters, 1998, 258, 167-170.	2.1	45
194	A cholinergic antagonist, mecamylamine, blocks light-induced Fos immunoreactivity in specific regions of the hamster suprachiasmatic nucleus. Brain Research, 1993, 615, 107-112.	2.2	44
195	Dynamics of noradrenergic circadian input to the chicken pineal gland. Brain Research, 1986, 384, 334-341.	2.2	43
196	The Xenopus Clock gene is constitutively expressed in retinal photoreceptors. Molecular Brain Research, 2000, 75, 303-308.	2.3	43
197	The cancer connection. Nature, 2002, 420, 373-374.	27.8	43
198	A tunable artificial circadian clock in clock-defective mice. Nature Communications, 2015, 6, 8587.	12.8	43

#	Article	IF	CITATIONS
199	Redox redux. Nature, 2011, 469, 476-478.	27.8	40
200	Impaired Limbic Gamma Oscillatory Synchrony during Anxiety-Related Behavior in a Genetic Mouse Model of Bipolar Mania. Journal of Neuroscience, 2011, 31, 6449-6456.	3.6	38
201	Noise-driven cellular heterogeneity in circadian periodicity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10350-10356.	7.1	38
202	Circadian control of interferon-sensitive gene expression in murine skin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5761-5771.	7.1	38
203	Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. ELife, 2016, 5, .	6.0	38
204	Somatostatin pretreatment desensitizes somatostatin receptors linked to adenylate cyclase and facilitates the stimulation of cyclic adenosine 3':5'-monophosphate accumulation in anterior pituitary tumor cells. Journal of Neuroscience, 1984, 4, 812-819.	3.6	37
205	Integration and saturation within the circadian photic entrainment pathway of hamsters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R1351-R1361.	1.8	36
206	Circadian Transcriptional Output in the SCN and Liver of the Mouse. Novartis Foundation Symposium, 2008, , 171-183.	1.1	35
207	Divergent and nonuniform gene expression patterns in mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19049-19054.	7.1	34
208	Visual sensitivities of nur77 (NGFI-B) and zif268 (NGFI-A) induction in the suprachiasmatic nucleus are dissociated from c-fos induction and behavioral phase-shifting responses. Molecular Brain Research, 1997, 46, 303-310.	2.3	33
209	Regulation of thevgf gene in the golden hamster suprachiasmatic nucleus by light and by the circadian clock. Journal of Comparative Neurology, 1997, 378, 229-238.	1.6	33
210	Entrainment of the circadian system of the house sparrow: A population of oscillators in pinealectomized birds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1982, 146, 245-253.	1.6	32
211	Immunocytochemical localization of serotonergic fibers innervating the ocular circadian system of Aplysia. Neuroscience, 1989, 28, 139-147.	2.3	32
212	Circadian Rhythms: ICER is nicer at night (sir!). Current Biology, 1994, 4, 165-168.	3.9	32
213	Molecular cloning of chick pineal tryptophan hydroxylase and circadian oscillation of its mRNA levels. Molecular Brain Research, 1996, 42, 25-30.	2.3	32
214	X-linked and lineage-dependent inheritance of coping responses to stress. Mammalian Genome, 2003, 14, 748-757.	2.2	32
215	Fos protein expression in the circadian clock is not associated with phase shifts induced by a nonphotic stimulus, triazolam. Neuroscience Letters, 1993, 164, 203-208.	2.1	31
216	Vasoactive Intestinal Polypeptide and α2-Adrenoceptor Agonists Regulate Adenosine 3′,5′-Monophosphate Accumulation and Melatonin Release in Chick Pineal Cell Cultures*. Endocrinology, 1989, 125, 2375-2384.	2.8	30

#	Article	IF	CITATIONS
217	Circadian clocks à la CREM. Nature, 1993, 365, 299-300.	27.8	30
218	Novel transcriptional networks regulated by CLOCK in human neurons. Genes and Development, 2017, 31, 2121-2135.	5.9	30
219	Cyclic AMP-Dependent Melatonin Production in Y79 Human Retinoblastoma Cells. Journal of Neurochemistry, 1989, 53, 307-310.	3.9	29
220	Chapter 10 Light entrainment and activation of signal transduction pathways in the SCN. Progress in Brain Research, 1996, 111, 133-146.	1.4	29
221	Nonphotic phase-shifting in Clock mutant mice. Brain Research, 2000, 859, 398-403.	2.2	29
222	Second-generation high-throughput forward genetic screen in mice to isolate subtle behavioral mutants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15557-15564.	7.1	29
223	Enriching the Circadian Proteome. Cell Metabolism, 2017, 25, 1-2.	16.2	28
224	Time to target the circadian clock for drug discovery. Trends in Biochemical Sciences, 2022, 47, 745-758.	7.5	28
225	Neuropeptide Y stimulates luteinizing hormone-releasing hormone release from superfused hypothalamic GT1-7 cells. Endocrinology, 1994, 135, 1621-1627.	2.8	27
226	ChIP-seq and RNA-seq Methods to Study Circadian Control of Transcription in Mammals. Methods in Enzymology, 2015, 551, 285-321.	1.0	26
227	The Circadian Clock: From Molecules to Behaviour. Annals of Medicine, 1995, 27, 481-490.	3.8	25
228	Lability of Circadian Pacemaker Amplitude in Chick Pineal Cells: A Temperature-Dependent Process. Journal of Biological Rhythms, 1997, 12, 309-318.	2.6	25
229	Circadian Behavior and Plasticity of Light-Induced c-fos Expression in SCN of tau Mutant Hamsters. Journal of Biological Rhythms, 1998, 13, 305-314.	2.6	25
230	A Circadian Sleep Disorder Reveals a Complex Clock. Cell, 2007, 128, 22-23.	28.9	25
231	Chemical perturbations reveal that RUVBL2 regulates the circadian phase in mammals. Science Translational Medicine, 2020, 12, .	12.4	25
232	An essential role for MEF2C in the cortical response to loss of sleep in mice. ELife, 2020, 9, .	6.0	25
233	Characterization of the Chicken Rhodopsin Promoter: Identification of Retina-Specific and glass-like Protein Binding Domains. Molecular and Cellular Neurosciences, 1994, 5, 309-318.	2,2	24
234	Light-dependent Activation of Rod Transducin by Pineal Opsin. Journal of Biological Chemistry, 1998, 273, 26820-26826.	3.4	24

#	Article	IF	CITATIONS
235	Characterization of 2-[1251]iodomelatonin binding sites in hamster brain. European Journal of Pharmacology, 1986, 132, 333-334.	3.5	23
236	Phase shifting the circadian clock with cycloheximide: response of hamster with an intact or a split rhythm of locomotor activity. Brain Research, 1989, 496, 82-88.	2.2	23
237	Pharmacological and Genetic Approaches for the Study of Circadian Rhythms in Mammals. Frontiers in Neuroendocrinology, 1995, 16, 191-223.	5.2	23
238	Critical period for cycloheximide blockade of light-induced phase advances of the circadian locomotor activity rhythm in golden hamsters. Brain Research, 1996, 740, 285-290.	2.2	23
239	Results from screening over 9000 mutation-bearing mice for defects in the electroretinogram and appearance of the fundus. Vision Research, 2004, 44, 3335-3345.	1.4	23
240	Forward Genetic Screens to Identify Circadian Rhythm Mutants in Mice. Methods in Enzymology, 2005, 393, 219-229.	1.0	23
241	HCFC2 is needed for IRF1- and IRF2-dependent <i>Tlr3</i> transcription and for survival during viral infections. Journal of Experimental Medicine, 2017, 214, 3263-3277.	8.5	23
242	Lineage is an Epigenetic Modifier of QTL Influencing Behavioral Coping with Stress. Behavior Genetics, 2005, 35, 189-198.	2.1	22
243	Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. ELife, 2016, 5, .	6.0	22
244	Circadian rhythms in parasites. PLoS Pathogens, 2017, 13, e1006590.	4.7	22
245	Regulation of Tryptophan Hydroxylase by Cyclic AMP, Calcium, Norepinephrine, and Light in Cultured Chick Pineal Cells. Journal of Neurochemistry, 2002, 67, 242-250.	3.9	21
246	Generation, characterization, and molecular cloning of the <i>Noerg-1</i> hutation of rhodopsin in the mouse. Visual Neuroscience, 2005, 22, 619-629.	1.0	21
247	Synchronization between peripheral circadian clock and feeding-fasting cycles in microfluidic device sustains oscillatory pattern of transcriptome. Nature Communications, 2021, 12, 6185.	12.8	20
248	Calcium modulates circadian variation in cAMP-stimulated melatonin in chick pineal cells. Brain Research, 1996, 716, 1-10.	2,2	19
249	A Pertussis Toxin-Sensitive G-Protein Mediates the $\hat{l}\pm 2$ -Adrenergic Receptor Inhibition of Melatonin Release in Photoreceptive Chick Pineal Cell Cultures*. Endocrinology, 1988, 123, 277-283.	2.8	18
250	N-acetyltransferase and protein synthesis modulate melatonin production by Y79 human retinoblastoma cells. Brain Research, 1991, 540, 138-144.	2.2	18
251	Ghrelin-immunopositive hypothalamic neurons tie the circadian clock and visual system to the lateral hypothalamic arousal center. Molecular Metabolism, 2012, 1, 79-85.	6.5	18
252	The Mouse Clock Locus: Sequence and Comparative Analysis of 204 Kb from Mouse Chromosome 5. Genome Research, 2000, 10, 1928-1940.	5.5	17

#	Article	IF	Citations
253	Maternal behavior modulates x-linked inheritance of behavioral coping in the defensive burying test. Biological Psychiatry, 2004, 55, 1069-1074.	1.3	16
254	Quantitative Trait Loci Associated with Elevated Thyroid-Stimulating Hormone in the Wistar-Kyoto Rat. Endocrinology, 2005, 146, 870-878.	2.8	15
255	Day/Night Differences in the Stimulation of Adenylate Cyclase Activity by Calcium/Calmodulin in Chick Pineal Cell Cultures: Evidence for Circadian Regulation of Cyclic AMP. Journal of Biological Rhythms, 1998, 13, 479-493.	2.6	14
256	NEUROBIOLOGY:Enhanced: Narcolepsy Genes Wake Up the Sleep Field. Science, 1999, 285, 2076-2077.	12.6	14
257	Identification of genetic loci involved in diabetes using a rat model of depression. Mammalian Genome, 2009, 20, 486-497.	2.2	14
258	Sleeping Sickness Disrupts the Sleep-Regulating Adenosine System. Journal of Neuroscience, 2020, 40, 9306-9316.	3.6	14
259	Sleeping Sickness: A Tale of Two Clocks. Frontiers in Cellular and Infection Microbiology, 2020, 10, 525097.	3.9	14
260	Epigenetic inheritance of circadian period in clonal cells. ELife, 2020, 9, .	6.0	14
261	Generation of N-Ethyl-N-nitrosourea (ENU) Diabetes Models in Mice Demonstrates Genotype-specific Action of Glucokinase Activators. Journal of Biological Chemistry, 2011, 286, 39560-39572.	3.4	13
262	Natural antisense transcript of <i>Period2, Per2AS,</i> regulates the amplitude of the mouse circadian clock. Genes and Development, 2021, 35, 899-913.	5.9	13
263	Quantitative Two-Dimensional Gel Electrophoretic Analysis of Clock-Controlled Proteins in Cultured Chick Pineal Cells: Circadian Regulation of Tryptophan Hydroxylase. Journal of Biological Rhythms, 1996, 11, 241-257.	2.6	12
264	An actigraphy study investigating sleep in bipolar I patients, unaffected siblings and controls. Journal of Affective Disorders, 2017, 208, 248-254.	4.1	12
265	A novel mouse model overexpressing <i>Nocturnin</i> results in decreased fat mass in male mice. Journal of Cellular Physiology, 2019, 234, 20228-20239.	4.1	12
266	Neuronal Myocyte-Specific Enhancer Factor 2D (MEF2D) Is Required for Normal Circadian and Sleep Behavior in Mice. Journal of Neuroscience, 2019, 39, 7958-7967.	3.6	11
267	Alterations in the Circadian System in Advanced Age. Novartis Foundation Symposium, 1995, 183, 212-234.	1.1	11
268	Xenobiotic metabolism in the fourth dimension: PARtners in time. Cell Metabolism, 2006, 4, 3-4.	16.2	10
269	PARP around the Clock. Cell, 2010, 142, 841-843.	28.9	10
270	Circadian Oscillations of NADH Redox State Using a Heterologous Metabolic Sensor in Mammalian Cells. Journal of Biological Chemistry, 2016, 291, 23906-23914.	3.4	10

#	Article	IF	CITATIONS
271	Mean-Variance QTL Mapping Identifies Novel QTL for Circadian Activity and Exploratory Behavior in Mice. G3: Genes, Genomes, Genetics, 2018, 8, 3783-3790.	1.8	10
272	Adverse impact of polyphasic sleep patterns in humans: Report of the National Sleep Foundation sleep timing and variability consensus panel. Sleep Health, 2021, 7, 293-302.	2.5	10
273	A genome end-game: understanding gene function in the nervous system. Nature Neuroscience, 2004, 7, 484-485.	14.8	9
274	Identification of mutations through dominant screening for obesity using C57BL/6 substrains. Scientific Reports, 2016, 6, 32453.	3.3	9
275	Circadian Rhythmicity., 1984,, 285-303.		9
276	Forskolin and camptothecin induce a 30 kDa protein associated with melatonin production in Y79 human retinoblastoma cells. Journal of Neuroscience, 1995, 15, 298-309.	3.6	8
277	Ion channels get the message. Nature, 1996, 382, 117-118.	27.8	7
278	Circadian rhythms in infectious diseases and symbiosis. Seminars in Cell and Developmental Biology, 2022, 126, 37-44.	5.0	7
279	Introduction to Circadian Rhythms. Handbook of Behavioral Neurobiology, 2001, , 3-6.	0.3	6
280	Epidermal stem cells ride the circadian wave. Genome Biology, 2013, 14, 140.	9.6	6
281	Genetic analysis of activity, brain and behavioral associations in extended families with heavy genetic loading for bipolar disorder. Psychological Medicine, 2021, 51, 494-502.	4.5	6
282	Biological Rhythms: From Gene Expression to Behavior**This paper is dedicated to Dr Aaron B. Lerner for his seminal work on melatonin, 1993,, 3-20.		6
283	RNA synthesis inhibitors increase melatonin production in Y79 human retinoblastoma cells. Molecular Brain Research, 1994, 23, 47-56.	2.3	5
284	Genetic analysis of the circadian system of mammals: properties and prospects. Seminars in Neuroscience, 1995, 7, 61-70.	2.2	5
285	Chapter 1 The biological clock: it's all in the genes. Progress in Brain Research, 1996, 111, 5-9.	1.4	4
286	Introduction to the Clock System. Advances in Experimental Medicine and Biology, 2021, 1344, 3-20.	1.6	4
287	Chapter 2.1.7 Genetic dissection of mouse behavior using induced mutagenesis. Handbook of Behavioral Neuroscience, 1999, , 147-165.	0.0	3
288	Phase-Resetting Sensitivity of the Suprachiasmatic Nucleus and Oscillator Amplitude. Journal of Biological Rhythms, 2011, 26, 371-373.	2.6	3

#	Article	IF	CITATIONS
289	Tissue-specific FAH deficiency alters sleep–wake patterns and results in chronic tyrosinemia in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22229-22236.	7.1	3
290	The Mouse Clock Locus: Sequence and Comparative Analysis of 204 Kb from Mouse Chromosome 5. Genome Research, 2000, 10, 1928-1940.	5 . 5	3
291	Mouse Chimeras and Their Application to Circadian Biology. Methods in Enzymology, 2005, 393, 478-492.	1.0	2
292	The 50th anniversary of the Konopka and Benzer 1971 paper in PNAS: "Clock Mutants of <i>Drosophila melanogaster</i> ― Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
293	Characterization of single nucleotide polymorphisms for a forward genetics approach using genetic crosses in C57BL/6 and BALB/c substrains of mice. Experimental Animals, 2022, 71, 240-251.	1.1	2
294	Photic threshold for stimulation of testicular growth and pituitary FSH release in male Djungarian hamsters. Brain Research, 1990, 512, 304-308.	2.2	1
295	Biography of Joseph S. Takahashi. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5336-5338.	7.1	1
296	Circadian Metabolic Oscillations in the Epidermis Stem Cells by Fluorescence Lifetime Microscopy of NADH in Vivo. Biophysical Journal, 2014, 106, 24a.	0.5	1
297	2. Molecular Architecture of the Circadian Clock in Mammals. Biological Psychiatry, 2018, 83, S1.	1.3	1
298	A Hyperkinetic Redox Sensor Drives Flies to Sleep. Trends in Neurosciences, 2019, 42, 514-517.	8.6	1
299	Michael Menaker (1934-2021). Journal of Biological Rhythms, 2021, 36, 074873042110537.	2.6	1
300	Circadian rhythms: from gene expression to behaviour. Current Biology, 1992, 2, 51.	3.9	0
301	Genetic control of the circadian pacemaker. , 0, , 119-126.		0
302	A novel mutation in <i>Slc2a4</i> as a mouse model of fatigue. Genes, Brain and Behavior, 2019, 18, e12578.	2.2	0
303	Beth Levine M.D. Prize in Autophagy Research. Autophagy, 2021, 17, 2053-2053.	9.1	0
304	Chemically Induced Mutations in the Mouse that Affect the Fundus and Electroretinogram. , 2003, , 188-189.		0
305	Molecular genetics of circadian clocks in mammals. , 0, 2003, .		0
306	Light Regulates c-fos Gene Expression in the Hamster SCN: Implications for Circadian and Seasonal Control of Reproduction., 1992,, 95-106.		0

#	Article	IF	CITATIONS
307	Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. SSRN Electronic Journal, 0, , .	0.4	O
308	Circadian alignment of feeding regulates lifespan extension by caloric restriction. Innovation in Aging, 2021, 5, 116-116.	0.1	0
309	The Circadian Clock: From Molecules to Behaviour. Annals of Medicine, 1995, 27, 481-490.	3.8	0