Joseph S Takahashi

List of Publications by Citations

Source: https://exaly.com/author-pdf/7364875/joseph-s-takahashi-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 297
 52,294
 105
 227

 papers
 h-index
 g-index

 326
 58,949
 14
 7.84

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
297	Obesity and metabolic syndrome in circadian Clock mutant mice. <i>Science</i> , 2005 , 308, 1043-5	33.3	1846
296	Coordinated transcription of key pathways in the mouse by the circadian clock. <i>Cell</i> , 2002 , 109, 307-20	56.2	1831
295	PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 5339-46	11.5	1722
294	Role of the CLOCK protein in the mammalian circadian mechanism. <i>Science</i> , 1998 , 280, 1564-9	33.3	1539
293	Central and peripheral circadian clocks in mammals. <i>Annual Review of Neuroscience</i> , 2012 , 35, 445-62	17	1319
292	Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. <i>Science</i> , 1994 , 264, 719-25	33.3	1319
291	Circadian integration of metabolism and energetics. <i>Science</i> , 2010 , 330, 1349-54	33.3	1253
29 0	Mop3 is an essential component of the master circadian pacemaker in mammals. <i>Cell</i> , 2000 , 103, 1009-	175.2	1157
289	Positional cloning of the mouse circadian clock gene. <i>Cell</i> , 1997 , 89, 641-53	56.2	1144
288	Molecular components of the mammalian circadian clock. <i>Human Molecular Genetics</i> , 2006 , 15 Spec No 2, R271-7	5.6	1142
287	The genetics of mammalian circadian order and disorder: implications for physiology and disease. <i>Nature Reviews Genetics</i> , 2008 , 9, 764-75	30.1	1141
286	Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. <i>Nature</i> , 2010 , 466, 627-31	50.4	1019
285	Transcriptional architecture of the mammalian circadian clock. <i>Nature Reviews Genetics</i> , 2017 , 18, 164-1	7 3 0.1	989
284	Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. <i>Science</i> , 2012 , 338, 349-54	33.3	931
283	Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. <i>Science</i> , 2009 , 324, 651-4	33.3	846
282	Suprachiasmatic nucleus: cell autonomy and network properties. <i>Annual Review of Physiology</i> , 2010 , 72, 551-77	23.1	840
281	Molecular architecture of the mammalian circadian clock. <i>Trends in Cell Biology</i> , 2014 , 24, 90-9	18.3	788

(2013-1993)

280	Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. <i>Science</i> , 1993 , 260, 238-41	33.3	755	
279	Mammalian circadian biology: elucidating genome-wide levels of temporal organization. <i>Annual Review of Genomics and Human Genetics</i> , 2004 , 5, 407-41	9.7	732	
278	The meter of metabolism. <i>Cell</i> , 2008 , 134, 728-42	56.2	718	
277	Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. <i>Science</i> , 2000 , 288, 483-92	33.3	712	
276	Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. <i>Science</i> , 1998 , 280, 1599-603	33.3	702	
275	Mania-like behavior induced by disruption of CLOCK. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 6406-11	11.5	619	
274	Temperature as a universal resetting cue for mammalian circadian oscillators. <i>Science</i> , 2010 , 330, 379-8	533.3	591	
273	Intercellular coupling confers robustness against mutations in the SCN circadian clock network. <i>Cell</i> , 2007 , 129, 605-16	56.2	584	
272	Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. <i>Cell</i> , 1997 , 89, 655-67	56.2	583	
271	Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 12114-	9 ^{11.5}	548	
270	Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. <i>Current Biology</i> , 2004 , 14, 2289-95	6.3	544	
269	System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. <i>PLoS Biology</i> , 2007 , 5, e34	9.7	508	
268	Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. <i>Nature</i> , 2012 , 485, 62-8	50.4	493	
267	A CLOCK polymorphism associated with human diurnal preference. <i>Sleep</i> , 1998 , 21, 569-76	1.1	484	
266	Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. <i>Nature</i> , 1984 , 308, 186-8	50.4	484	
265	Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. <i>Neuron</i> , 1990 , 5, 127-34	13.9	474	
264	Molecular genetics of circadian rhythms in mammals. <i>Annual Review of Neuroscience</i> , 2000 , 23, 713-42	17	436	
263	Molecular components of the Mammalian circadian clock. <i>Handbook of Experimental Pharmacology</i> , 2013 , 3-27	3.2	428	

262	Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. <i>Cell</i> , 2007 , 129, 1011-23	56.2	420
261	Regulation of dopaminergic transmission and cocaine reward by the Clock gene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 9377-81	11.5	393
260	Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 3342-7	11.5	389
259	Genetics of circadian rhythms in Mammalian model organisms. <i>Advances in Genetics</i> , 2011 , 74, 175-230	3.3	384
258	FGF21 regulates metabolism and circadian behavior by acting on the nervous system. <i>Nature Medicine</i> , 2013 , 19, 1147-52	50.5	333
257	cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. <i>Science</i> , 2008 , 320, 949-53	33.3	328
256	Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. <i>Science</i> , 1998 , 282, 1490-4	33.3	320
255	Clock controls circadian period in isolated suprachiasmatic nucleus neurons. <i>Nature Neuroscience</i> , 1998 , 1, 708-13	25.5	316
254	The circadian clock mutation alters sleep homeostasis in the mouse. <i>Journal of Neuroscience</i> , 2000 , 20, 8138-43	6.6	315
253	Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. <i>Neuron</i> , 2008 , 58, 78-88	13.9	301
252	Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. <i>Neuron</i> , 1998 , 21, 1101-13	13.9	300
251	Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. <i>Current Biology</i> , 2004 , 14, 1367-73	6.3	263
250	Regulation of circadian rhythmicity. <i>Science</i> , 1982 , 217, 1104-11	33.3	258
249	Stopping time: the genetics of fly and mouse circadian clocks. <i>Annual Review of Neuroscience</i> , 2001 , 24, 1091-119	17	257
248	Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). <i>Journal of Physiology</i> , 1991 , 439, 115-45	3.9	257
247	TH17 cell differentiation is regulated by the circadian clock. <i>Science</i> , 2013 , 342, 727-30	33.3	255
246	Identification of the circadian transcriptome in adult mouse skeletal muscle. <i>Physiological Genomics</i> , 2007 , 31, 86-95	3.6	254
245	The Small Molecule Nobiletin Targets the Molecular Oscillator to Enhance Circadian Rhythms and Protect against Metabolic Syndrome. <i>Cell Metabolism</i> , 2016 , 23, 610-21	24.6	251

(2011-2005)

244	A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 2608-13	11.5	242
243	Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. <i>Annual Review of Genetics</i> , 2000 , 34, 533-562	14.5	239
242	Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. <i>Science</i> , 2006 , 314, 1304-8	33.3	237
241	CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 19090-5	11.5	234
240	Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. <i>Cell</i> , 2013 , 152, 1091-105	56.2	224
239	Regulation of jun-B messenger RNA and AP-1 activity by light and a circadian clock. <i>Science</i> , 1992 , 255, 1581-4	33-3	204
238	Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1980 , 77, 2319-22	11.5	202
237	Circadian sensitivity to the chemotherapeutic agent cyclophosphamide depends on the functional status of the CLOCK/BMAL1 transactivation complex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 3407-12	11.5	201
236	Forward and reverse genetic approaches to behavior in the mouse. <i>Science</i> , 1994 , 264, 1724-33	33.3	200
235	CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 15744-9	11.5	199
234	Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. <i>Science</i> , 2012 , 337, 189-94	33.3	198
233	BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. <i>Nature Neuroscience</i> , 2006 , 9, 1041-9	25.5	194
232	Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice. <i>Genome Research</i> , 2001 , 11, 959-80	9.7	189
231	Circadian rhythm generation and entrainment in astrocytes. <i>Journal of Neuroscience</i> , 2005 , 25, 404-8	6.6	188
230	The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 9327-32	11.5	185
229	Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. <i>Neuron</i> , 1999 , 23, 537-48	13.9	181
228	Use of 2-[125I]iodomelatonin to characterize melatonin binding sites in chicken retina. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1987 , 84, 3916-20	11.5	179
227	Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. <i>Trends in Neurosciences</i> , 2011 , 34, 349-58	13.3	175

226	Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 11758-63	11.5	165
225	Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 101-6	11.5	162
224	Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. <i>Molecular Cell</i> , 2009 , 36, 417-30	17.6	160
223	Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. <i>Neuron</i> , 1993 , 10, 579-84	13.9	158
222	Time- and exercise-dependent gene regulation in human skeletal muscle. <i>Genome Biology</i> , 2003 , 4, R61	18.3	156
221	Forward-genetics analysis of sleep in randomly mutagenized mice. <i>Nature</i> , 2016 , 539, 378-383	50.4	152
220	Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biology, 2010, 8, e100	05 1 3	150
219	Real-time luminescence reporting of circadian gene expression in mammals. <i>Methods in Enzymology</i> , 2005 , 393, 288-301	1.7	146
218	Pineal opsin: a nonvisual opsin expressed in chick pineal. <i>Science</i> , 1995 , 267, 1502-6	33.3	145
217	The mouse Clock mutation behaves as an antimorph and maps within the W19H deletion, distal of Kit. <i>Genetics</i> , 1997 , 146, 1049-60	4	136
216	Circadian clock in cell culture: I. Oscillation of melatonin release from dissociated chick pineal cells in flow-through microcarrier culture. <i>Journal of Neuroscience</i> , 1988 , 8, 12-21	6.6	135
215	Light, immediate-early genes, and circadian rhythms. <i>Behavior Genetics</i> , 1996 , 26, 221-40	3.2	134
214	C57BL/6N mutation in cytoplasmic FMRP interacting protein 2 regulates cocaine response. <i>Science</i> , 2013 , 342, 1508-12	33.3	133
213	2-[125I]iodomelatonin binding sites in hamster brain membranes: pharmacological characteristics and regional distribution. <i>Endocrinology</i> , 1988 , 122, 1825-33	4.8	131
212	Molecular components of the circadian clock in mammals. <i>Diabetes, Obesity and Metabolism</i> , 2015 , 17 Suppl 1, 6-11	6.7	130
211	Genomics of circadian rhythms in health and disease. <i>Genome Medicine</i> , 2019 , 11, 82	14.4	130
2 10	Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behavior. <i>Cell</i> , 2001 , 105, 25-42	56.2	128
209	Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. Journal of Neuroscience, 1982 , 2, 815-28	6.6	128

(2001-2017)

208	Guidelines for Genome-Scale Analysis of Biological Rhythms. <i>Journal of Biological Rhythms</i> , 2017 , 32, 380-393	3.2	127
207	The orphan receptor Rev-erbalpha gene is a target of the circadian clock pacemaker. <i>Journal of Molecular Endocrinology</i> , 2004 , 33, 585-608	4.5	127
206	Aging alters circadian and light-induced expression of clock genes in golden hamsters. <i>Journal of Biological Rhythms</i> , 2003 , 18, 159-69	3.2	127
205	Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice invivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 489-94	11.5	126
204	The physiology of circadian pacemakers. <i>Annual Review of Physiology</i> , 1978 , 40, 501-26	23.1	126
203	Medicine in the Fourth Dimension. <i>Cell Metabolism</i> , 2019 , 30, 238-250	24.6	125
202	Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. <i>Neuroscience</i> , 1996 , 70, 951-61	3.9	124
201	Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 1997 , 273, R1957-64	3.2	123
200	Characteristics and autoradiographic localization of 2-[125I]iodomelatonin binding sites in Djungarian hamster brain. <i>Endocrinology</i> , 1989 , 125, 1011-8	4.8	119
199	Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genetics, 2009, 5, e1000	573	117
199 198	Circadian clock genes contribute to the regulation of hair follicle cycling. <i>PLoS Genetics</i> , 2009 , 5, e1000 Familial advanced sleep phase syndrome. <i>Archives of Neurology</i> , 2001 , 58, 1089-94	573	117
		13.9	<u> </u>
198	Familial advanced sleep phase syndrome. <i>Archives of Neurology</i> , 2001 , 58, 1089-94 Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to		114
198	Familial advanced sleep phase syndrome. <i>Archives of Neurology</i> , 2001 , 58, 1089-94 Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. <i>Neuron</i> , 2015 , 85, 1086-102	13.9	114
198 197 196	Familial advanced sleep phase syndrome. <i>Archives of Neurology</i> , 2001 , 58, 1089-94 Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. <i>Neuron</i> , 2015 , 85, 1086-102 Future of genetics of mood disorders research. <i>Biological Psychiatry</i> , 2002 , 52, 457-77 Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an	13.9 7.9	114 108 108
198 197 196	Familial advanced sleep phase syndrome. <i>Archives of Neurology</i> , 2001 , 58, 1089-94 Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. <i>Neuron</i> , 2015 , 85, 1086-102 Future of genetics of mood disorders research. <i>Biological Psychiatry</i> , 2002 , 52, 457-77 Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an Automated Feeder System. <i>Cell Metabolism</i> , 2017 , 26, 267-277.e2 Sex- and lineage-specific inheritance of depression-like behavior in the rat. <i>Mammalian Genome</i> ,	13.9 7.9 24.6	114 108 108
198 197 196 195	Familial advanced sleep phase syndrome. <i>Archives of Neurology</i> , 2001 , 58, 1089-94 Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. <i>Neuron</i> , 2015 , 85, 1086-102 Future of genetics of mood disorders research. <i>Biological Psychiatry</i> , 2002 , 52, 457-77 Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an Automated Feeder System. <i>Cell Metabolism</i> , 2017 , 26, 267-277.e2 Sex- and lineage-specific inheritance of depression-like behavior in the rat. <i>Mammalian Genome</i> , 2004 , 15, 648-62 Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain	13.9 7.9 24.6 3.2	114 108 108 107

190	Circadian clock in cell culture: II. In vitro photic entrainment of melatonin oscillation from dissociated chick pineal cells. <i>Journal of Neuroscience</i> , 1988 , 8, 22-30	6.6	100
189	Circadian clock genes and the transcriptional architecture of the clock mechanism. <i>Journal of Molecular Endocrinology</i> , 2019 , 63, R93-R102	4.5	100
188	Finding new clock components: past and future. Journal of Biological Rhythms, 2004, 19, 339-47	3.2	98
187	In vivo single-cell detection of metabolic oscillations in stem cells. <i>Cell Reports</i> , 2015 , 10, 1-7	10.6	96
186	The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity. <i>Journal of Biological Rhythms</i> , 2015 , 30, 163-82	3.2	94
185	Vasopressin regulation of the proestrous luteinizing hormone surge in wild-type and Clock mutant mice. <i>Biology of Reproduction</i> , 2006 , 75, 778-84	3.9	93
184	The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. <i>Journal of Neuroscience</i> , 2000 , 20, RC83	6.6	92
183	Why the neuroendocrine system is important in aging processes. <i>Experimental Gerontology</i> , 1987 , 22, 1-15	4.5	92
182	Light-induced decrease of serotonin N-acetyltransferase activity and melatonin in the chicken pineal gland and retina. <i>Brain Research</i> , 1983 , 266, 287-93	3.7	86
181	The Genomic Landscape and Pharmacogenomic Interactions of Clock Genes in Cancer Chronotherapy. <i>Cell Systems</i> , 2018 , 6, 314-328.e2	10.6	85
180	Development and Therapeutic Potential of Small-Molecule Modulators of Circadian Systems. <i>Annual Review of Pharmacology and Toxicology</i> , 2018 , 58, 231-252	17.9	85
179	Utilization of a whole genome SNP panel for efficient genetic mapping in the mouse. <i>Genome Research</i> , 2006 , 16, 436-40	9.7	85
178	Temperature compensation and temperature entrainment of the chick pineal cell circadian clock. Journal of Neuroscience, 1995 , 15, 5681-92	6.6	84
177	Small molecule modifiers of circadian clocks. <i>Cellular and Molecular Life Sciences</i> , 2013 , 70, 2985-98	10.3	82
176	Comparison of visual sensitivity for suppression of pineal melatonin and circadian phase-shifting in the golden hamster. <i>Brain Research</i> , 1991 , 554, 272-7	3.7	82
175	Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. <i>PLoS Genetics</i> , 2012 , 8, e1002835	6	81
174	Adenylate cyclase activation shifts the phase of a circadian pacemaker. <i>Science</i> , 1983 , 220, 82-4	33.3	81
173	Gene set enrichment in eQTL data identifies novel annotations and pathway regulators. <i>PLoS Genetics</i> , 2008 , 4, e1000070	6	79

(2010-1993)

172	Circadian-clock regulation of gene expression. <i>Current Opinion in Genetics and Development</i> , 1993 , 3, 301-9	4.9	78
171	Searching for genes underlying behavior: lessons from circadian rhythms. <i>Science</i> , 2008 , 322, 909-12	33.3	77
170	The avian pineal, a vertebrate model system of the circadian oscillator: cellular regulation of circadian rhythms by light, second messengers, and macromolecular synthesis. <i>Endocrine Reviews</i> , 1989 , 45, 279-348; discussion 348-52		74
169	Implementing large-scale ENU mutagenesis screens in North America. <i>Genetica</i> , 2004 , 122, 51-64	1.5	73
168	Central circadian control of female reproductive function. Frontiers in Endocrinology, 2013, 4, 195	5.7	72
167	Phosphorylation of LSD1 by PKCIIs crucial for circadian rhythmicity and phase resetting. <i>Molecular Cell</i> , 2014 , 53, 791-805	17.6	71
166	Circadian rhythms: molecular basis of the clock. <i>Current Opinion in Genetics and Development</i> , 1998 , 8, 595-602	4.9	70
165	Genetics and neurobiology of circadian clocks in mammals. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2007 , 72, 251-259	3.9	70
164	Circadian clock genes are ticking. <i>Science</i> , 1992 , 258, 238-40	33.3	70
163	function in skeletal muscle regulates sleep. <i>ELife</i> , 2017 , 6,	8.9	66
162	Genomewide association analysis in diverse inbred mice: power and population structure. <i>Genetics</i> , 2007 , 176, 675-83	4	66
161	Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. <i>ELife</i> , 2014 , 3, e03674	8.9	65
160	Multiple redundant circadian oscillators within the isolated avian pineal gland. <i>Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology</i> , 1984 , 154, 435-440) ^{2.3}	63
159	Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer-enhancer interactions. <i>Genes and Development</i> , 2019 , 33, 294-309	12.6	63
158	Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. <i>Nature Communications</i> , 2019 , 10, 3923	17.4	62
157	HDAC5 and Its Target Gene, Npas4, Function in the Nucleus Accumbens to Regulate Cocaine-Conditioned Behaviors. <i>Neuron</i> , 2017 , 96, 130-144.e6	13.9	61
156	Large-scale mutagenesis of the mouse to understand the genetic bases of nervous system structure and function. <i>Molecular Brain Research</i> , 2004 , 132, 105-15		61
155	Lithium ameliorates nucleus accumbens phase-signaling dysfunction in a genetic mouse model of mania. <i>Journal of Neuroscience</i> , 2010 , 30, 16314-23	6.6	60

154	Circadian clock genes as modulators of sensitivity to genotoxic stress. Cell Cycle, 2005, 4, 901-7	4.7	60
153	Anisomycin, an inhibitor of protein synthesis, perturbs the phase of a mammalian circadian pacemaker. <i>Brain Research</i> , 1987 , 405, 199-203	3.7	60
152	Light-dependent regulation of dopamine receptors in mammalian retina. <i>Brain Research</i> , 1985 , 335, 321	1- 5 .7	60
151	Twenty-four hour oscillation of cAMP in chick pineal cells: role of cAMP in the acute and circadian regulation of melatonin production. <i>Neuron</i> , 1989 , 3, 609-19	13.9	59
150	Genetic contributions to circadian activity rhythm and sleep pattern phenotypes in pedigrees segregating for severe bipolar disorder. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E754-61	11.5	58
149	Trypanosoma brucei metabolism is under circadian control. <i>Nature Microbiology</i> , 2017 , 2, 17032	26.6	57
148	Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 1560-1565	11.5	56
147	3PUTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E8855-E8864	4 ^{11.5}	55
146	Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18757-62	11.5	55
145	The gene for soluble N-ethylmaleimide sensitive factor attachment protein alpha is mutated in hydrocephaly with hop gait (hyh) mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 1748-53	11.5	54
144	A cholinergic antagonist, mecamylamine, blocks the phase-shifting effects of light on the circadian rhythm of locomotor activity in the golden hamster. <i>Brain Research</i> , 1987 , 403, 308-12	3.7	54
143	Automated Measurement of Mouse Freezing Behavior and its Use for Quantitative Trait Locus Analysis of Contextual Fear Conditioning in (BALB/cJ IC57BL/6J)F2 Mice. <i>Learning and Memory</i> , 1998 , 5, 391-403	2.8	54
142	Cell-Autonomous Regulation of Astrocyte Activation by the Circadian Clock Protein BMAL1. <i>Cell Reports</i> , 2018 , 25, 1-9.e5	10.6	54
141	Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. <i>Cell Reports</i> , 2017 , 20, 1061-1072	10.6	53
140	Generation, identification and functional characterization of the nob4 mutation of Grm6 in the mouse. <i>Visual Neuroscience</i> , 2007 , 24, 111-23	1.7	53
139	Molecular approaches to understanding circadian oscillations. <i>Annual Review of Physiology</i> , 1993 , 55, 729-53	23.1	53
138	Transcriptional Basis for Rhythmic Control of Hunger and Metabolism within the AgRP Neuron. <i>Cell Metabolism</i> , 2019 , 29, 1078-1091.e5	24.6	53
137	Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice. Investigative Ophthalmology and Visual Science, 2005, 46, 2540-51		51

(2010-1984)

136	Cyclic guanosine 3. P.5 Pmonophosphate mimics the effects of light on a circadian pacemaker in the eye of aplysia. <i>Journal of Neuroscience</i> , 1984 , 4, 2466-71	6.6	51	
135	Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length. <i>Journal of Biological Chemistry</i> , 2013 , 288, 35277-86	5.4	49	
134	Methods to record circadian rhythm wheel running activity in mice. <i>Methods in Enzymology</i> , 2005 , 393, 230-9	1.7	49	
133	Locomotor response to an open field during C57BL/6J active and inactive phases: differences dependent on conditions of illumination. <i>Physiology and Behavior</i> , 2000 , 69, 269-75	3.5	49	
132	Alpha-2 adrenergic regulation of melatonin release in chick pineal cell cultures. <i>Journal of Neuroscience</i> , 1987 , 7, 3665-74	6.6	49	
131	Sleeping sickness is a circadian disorder. <i>Nature Communications</i> , 2018 , 9, 62	17.4	47	
130	Transcriptional program of Kpna2/Importin-2 regulates cellular differentiation-coupled circadian clock development in mammalian cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E5039-48	11.5	47	
129	Inducible and reversible Clock gene expression in brain using the tTA system for the study of circadian behavior. <i>PLoS Genetics</i> , 2007 , 3, e33	6	47	
128	Effect of circadian phase on context and cued fear conditioning in C57BL/6J mice. <i>Learning and Behavior</i> , 2001 , 29, 133-142		47	
127	Circadian rhythms: from gene expression to behavior. Current Opinion in Neurobiology, 1991, 1, 556-61	7.6	47	
126	Usf1, a suppressor of the circadian Clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice. <i>ELife</i> , 2013 , 2, e00426	8.9	47	
125	Measurement of hypocretin/orexin content in the mouse brain using an enzyme immunoassay: the effect of circadian time, age and genetic background. <i>Peptides</i> , 2002 , 23, 2203-11	3.8	46	
124	Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19449-19457	7 ^{11.5}	45	
123	Effects of aging on lens transmittance and retinal input to the suprachiasmatic nucleus in golden hamsters. <i>Neuroscience Letters</i> , 1998 , 258, 167-70	3.3	44	
122	Interpretation of the mouse electroretinogram. <i>Documenta Ophthalmologica</i> , 2007 , 115, 127-36	2.2	44	
121	Magnetic sensitivity of cryptochrome 4 from a migratory songbird. <i>Nature</i> , 2021 , 594, 535-540	50.4	44	
120	An evolutionary hotspot defines functional differences between CRYPTOCHROMES. <i>Nature Communications</i> , 2018 , 9, 1138	17.4	43	
119	Genetic suppression of the circadian Clock mutation by the melatonin biosynthesis pathway. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 8399-403	11.5	43	

118	Effects of age on circadian rhythms are similar in wild-type and heterozygous Clock mutant mice. <i>Neurobiology of Aging</i> , 2004 , 25, 517-23	5.6	43
117	Large-scale mutagenesis and phenotypic screens for the nervous system and behavior in mice. <i>Trends in Neurosciences</i> , 2006 , 29, 233-40	13.3	42
116	Depressive-like behavior and stress reactivity are independent traits in a Wistar Kyoto x Fisher 344 cross. <i>Molecular Psychiatry</i> , 2003 , 8, 423-33	15.1	42
115	Dynamics of noradrenergic circadian input to the chicken pineal gland. <i>Brain Research</i> , 1986 , 384, 334-4	13.7	42
114	A cholinergic antagonist, mecamylamine, blocks light-induced fos immunoreactivity in specific regions of the hamster suprachiasmatic nucleus. <i>Brain Research</i> , 1993 , 615, 107-12	3.7	41
113	The Xenopus clock gene is constitutively expressed in retinal photoreceptors. <i>Molecular Brain Research</i> , 2000 , 75, 303-8		40
112	Genetic analysis of the stress-responsive adrenocortical axis. <i>Physiological Genomics</i> , 2006 , 27, 362-9	3.6	38
111	Vasoactive intestinal polypeptide (VIP)-expressing neurons in the suprachiasmatic nucleus provide sparse GABAergic outputs to local neurons with circadian regulation occurring distal to the opening of postsynaptic GABAA ionotropic receptors. <i>Journal of Neuroscience</i> , 2015 , 35, 1905-20	6.6	37
110	The malaria parasite has an intrinsic clock. <i>Science</i> , 2020 , 368, 746-753	33.3	37
109	Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality. <i>Behavioural Brain Research</i> , 2006 , 169, 220-30	3.4	37
108	Cycling Transcriptional Networks Optimize Energy Utilization on a Genome Scale. <i>Cell Reports</i> , 2015 , 13, 1868-80	10.6	36
107	Impaired limbic gamma oscillatory synchrony during anxiety-related behavior in a genetic mouse model of bipolar mania. <i>Journal of Neuroscience</i> , 2011 , 31, 6449-56	6.6	34
106	Visual sensitivities of nur77 (NGFI-B) and zif268 (NGFI-A) induction in the suprachiasmatic nucleus are dissociated from c-fos induction and behavioral phase-shifting responses. <i>Molecular Brain Research</i> , 1997 , 46, 303-10		32
105	Regulation of the vgf gene in the golden hamster suprachiasmatic nucleus by light and by the circadian clock. <i>Journal of Comparative Neurology</i> , 1997 , 378, 229-238	3.4	32
104	Integration and saturation within the circadian photic entrainment pathway of hamsters. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 1999 , 277, R1351-61	3.2	32
103	Somatostatin pretreatment desensitizes somatostatin receptors linked to adenylate cyclase and facilitates the stimulation of cyclic adenosine 3P.5Pmonophosphate accumulation in anterior pituitary tumor cells. <i>Journal of Neuroscience</i> , 1984 , 4, 812-9	6.6	32
102	Mouse mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. <i>ELife</i> , 2016 , 5,	8.9	32
101	Molecular cloning of chick pineal tryptophan hydroxylase and circadian oscillation of its mRNA levels. <i>Molecular Brain Research</i> , 1996 , 42, 25-30		31

100	A tunable artificial circadian clock in clock-defective mice. <i>Nature Communications</i> , 2015 , 6, 8587	17.4	30	
99	Fos protein expression in the circadian clock is not associated with phase shifts induced by a nonphotic stimulus, triazolam. <i>Neuroscience Letters</i> , 1993 , 164, 203-8	3.3	30	
98	X-linked and lineage-dependent inheritance of coping responses to stress. <i>Mammalian Genome</i> , 2003 , 14, 748-57	3.2	29	
97	Circadian rhythms. ICER is nicer at night (sir!). Current Biology, 1994, 4, 165-8	6.3	28	
96	Vasoactive intestinal polypeptide and alpha 2-adrenoceptor agonists regulate adenosine 3P,5Pmonophosphate accumulation and melatonin release in chick pineal cell cultures. <i>Endocrinology</i> , 1989 , 125, 2375-84	4.8	28	
95	Cyclic AMP-dependent melatonin production in Y79 human retinoblastoma cells. <i>Journal of Neurochemistry</i> , 1989 , 53, 307-10	6	28	
94	Immunocytochemical localization of serotonergic fibers innervating the ocular circadian system of Aplysia. <i>Neuroscience</i> , 1989 , 28, 139-47	3.9	28	
93	Entrainment of the circadian system of the house sparrow: A population of oscillators in pinealectomized birds. <i>Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology</i> , 1982 , 146, 245-253	2.3	28	
92	Nonphotic phase-shifting in clock mutant mice. Brain Research, 2000, 859, 398-403	3.7	27	
91	Molecular Architecture of the Circadian Clock in Mammals. <i>Research and Perspectives in Endocrine Interactions</i> , 2016 , 13-24		27	
90	Dual-Color Single-Cell Imaging of the Suprachiasmatic Nucleus Reveals a Circadian Role in Network Synchrony. <i>Neuron</i> , 2020 , 108, 164-179.e7	13.9	26	
89	Enriching the Circadian Proteome. <i>Cell Metabolism</i> , 2017 , 25, 1-2	24.6	25	
88	Circadian Transcriptional Output in the SCN and Liver of the Mouse. <i>Novartis Foundation Symposium</i> , 2008 , 171-183		25	
87	Importance of circadian timing for aging and longevity. <i>Nature Communications</i> , 2021 , 12, 2862	17.4	25	
86	Divergent and nonuniform gene expression patterns in mouse brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 19049-54	11.5	24	
85	Characterization of the chicken rhodopsin promoter: identification of retina-specific and glass-like protein binding domains. <i>Molecular and Cellular Neurosciences</i> , 1994 , 5, 309-18	4.8	24	
84	The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock. <i>Cell</i> , 2021 , 184, 4154-4167.e12	56.2	24	
83	Circadian behavior and plasticity of light-induced c-fos expression in SCN of tau mutant hamsters. Journal of Biological Rhythms, 1998 , 13, 305-14	3.2	23	

82	Characterization of 2-[125I]iodomelatonin binding sites in hamster brain. <i>European Journal of Pharmacology</i> , 1986 , 132, 333-4	5.3	23
81	ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals. <i>Methods in Enzymology</i> , 2015 , 551, 285-321	1.7	22
80	Light-dependent activation of rod transducin by pineal opsin. <i>Journal of Biological Chemistry</i> , 1998 , 273, 26820-6	5.4	22
79	Light entrainment and activation of signal transduction pathways in the SCN. <i>Progress in Brain Research</i> , 1996 , 111, 133-46	2.9	22
78	Critical period for cycloheximide blockade of light-induced phase advances of the circadian locomotor activity rhythm in golden hamsters. <i>Brain Research</i> , 1996 , 740, 285-90	3.7	22
77	Lability of circadian pacemaker amplitude in chick pineal cells: a temperature-dependent process. Journal of Biological Rhythms, 1997 , 12, 309-18	3.2	21
76	A circadian sleep disorder reveals a complex clock. <i>Cell</i> , 2007 , 128, 22-3	56.2	21
75	Results from screening over 9000 mutation-bearing mice for defects in the electroretinogram and appearance of the fundus. <i>Vision Research</i> , 2004 , 44, 3335-45	2.1	21
74	The circadian clock: from molecules to behaviour. <i>Annals of Medicine</i> , 1995 , 27, 481-90	1.5	21
73	Phase shifting the circadian clock with cycloheximide: response of hamsters with an intact or a split rhythm of locomotor activity. <i>Brain Research</i> , 1989 , 496, 82-8	3.7	21
72	Forward genetic screens to identify circadian rhythm mutants in mice. <i>Methods in Enzymology</i> , 2005 , 393, 219-29	1.7	20
71	HCFC2 is needed for IRF1- and IRF2-dependent transcription and for survival during viral infections. Journal of Experimental Medicine, 2017 , 214, 3263-3277	16.6	19
70	Circadian control of interferon-sensitive gene expression in murine skin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 5761-5771	11.5	19
69	Novel transcriptional networks regulated by CLOCK in human neurons. <i>Genes and Development</i> , 2017 , 31, 2121-2135	12.6	19
68	Second-generation high-throughput forward genetic screen in mice to isolate subtle behavioral mutants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108 Suppl 3, 15557-64	11.5	19
67	Generation, characterization, and molecular cloning of the Noerg-1 mutation of rhodopsin in the mouse. <i>Visual Neuroscience</i> , 2005 , 22, 619-29	1.7	19
66	Pharmacological and genetic approaches for the study of circadian rhythms in mammals. <i>Frontiers in Neuroendocrinology</i> , 1995 , 16, 191-223	8.9	19
65	Regulation of tryptophan hydroxylase by cyclic AMP, calcium, norepinephrine, and light in cultured chick pineal cells. <i>Journal of Neurochemistry</i> , 1996 , 67, 242-50	6	18

(2010-1991)

64	N-acetyltransferase and protein synthesis modulate melatonin production by Y79 human retinoblastoma cells. <i>Brain Research</i> , 1991 , 540, 138-44	3.7	18
63	Lineage is an epigenetic modifier of QTL influencing behavioral coping with stress. <i>Behavior Genetics</i> , 2005 , 35, 189-98	3.2	17
62	Calcium modulates circadian variation in cAMP-stimulated melatonin in chick pineal cells. <i>Brain Research</i> , 1996 , 716, 1-10	3.7	17
61	Circadian rhythms in parasites. <i>PLoS Pathogens</i> , 2017 , 13, e1006590	7.6	17
60	A pertussis toxin-sensitive G-protein mediates the alpha 2-adrenergic receptor inhibition of melatonin release in photoreceptive chick pineal cell cultures. <i>Endocrinology</i> , 1988 , 123, 277-83	4.8	16
59	Noise-driven cellular heterogeneity in circadian periodicity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 10350-10356	11.5	15
58	Ghrelin-immunopositive hypothalamic neurons tie the circadian clock and visual system to the lateral hypothalamic arousal center. <i>Molecular Metabolism</i> , 2012 , 1, 79-85	8.8	15
57	Maternal behavior modulates X-linked inheritance of behavioral coping in the defensive burying test. <i>Biological Psychiatry</i> , 2004 , 55, 1069-74	7.9	15
56	Quantitative trait loci associated with elevated thyroid-stimulating hormone in the Wistar-Kyoto rat. <i>Endocrinology</i> , 2005 , 146, 870-8	4.8	14
55	The mouse Clock locus: sequence and comparative analysis of 204 kb from mouse chromosome 5. <i>Genome Research</i> , 2000 , 10, 1928-40	9.7	13
54	Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. <i>ELife</i> , 2016 , 5,	8.9	13
53	Generation of N-ethyl-N-nitrosourea (ENU) diabetes models in mice demonstrates genotype-specific action of glucokinase activators. <i>Journal of Biological Chemistry</i> , 2011 , 286, 39560-72	5.4	12
52	Day/night differences in the stimulation of adenylate cyclase activity by calcium/calmodulin in chick pineal cell cultures: evidence for circadian regulation of cyclic AMP. <i>Journal of Biological Rhythms</i> , 1998 , 13, 479-93	3.2	12
51	Narcolepsy genes wake up the sleep field. <i>Science</i> , 1999 , 285, 2076-7	33.3	11
50	An essential role for MEF2C in the cortical response to loss of sleep in mice. <i>ELife</i> , 2020 , 9,	8.9	11
49	Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice <i>Science</i> , 2022 , 376, e	33.3	11
48	An actigraphy study investigating sleep in bipolar I patients, unaffected siblings and controls. Journal of Affective Disorders, 2017 , 208, 248-254	6.6	10
47	PARP around the clock. <i>Cell</i> , 2010 , 142, 841-3	56.2	10

46	Quantitative two-dimensional gel electrophoretic analysis of clock-controlled proteins in cultured chick pineal cells: circadian regulation of tryptophan hydroxylase. <i>Journal of Biological Rhythms</i> , 1996 , 11, 241-57	3.2	10
45	Chemical perturbations reveal that RUVBL2 regulates the circadian phase in mammals. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	9
44	Identification of genetic loci involved in diabetes using a rat model of depression. <i>Mammalian Genome</i> , 2009 , 20, 486-97	3.2	9
43	Xenobiotic metabolism in the fourth dimension: PARtners in time. Cell Metabolism, 2006, 4, 3-4	24.6	8
42	A genome end-game: understanding gene function in the nervous system. <i>Nature Neuroscience</i> , 2004 , 7, 484-5	25.5	8
41	Epigenetic inheritance of circadian period in clonal cells. <i>ELife</i> , 2020 , 9,	8.9	8
40	Mean-Variance QTL Mapping Identifies Novel QTL for Circadian Activity and Exploratory Behavior in Mice. <i>G3: Genes, Genomes, Genetics</i> , 2018 , 8, 3783-3790	3.2	8
39	NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. <i>Neuron</i> , 2021 , 109, 3268-3282.e6	13.9	8
38	Neuronal Myocyte-Specific Enhancer Factor 2D (MEF2D) Is Required for Normal Circadian and Sleep Behavior in Mice. <i>Journal of Neuroscience</i> , 2019 , 39, 7958-7967	6.6	7
37	A novel mouse model overexpressing Nocturnin results in decreased fat mass in male mice. <i>Journal of Cellular Physiology</i> , 2019 , 234, 20228-20239	7	7
36	Circadian Oscillations of NADH Redox State Using a Heterologous Metabolic Sensor in Mammalian Cells. <i>Journal of Biological Chemistry</i> , 2016 , 291, 23906-23914	5.4	7
35	Circadian Rhythmicity 1984 , 285-303		7
34	Epidermal stem cells ride the circadian wave. <i>Genome Biology</i> , 2013 , 14, 140	18.3	6
33	Identification of mutations through dominant screening for obesity using C57BL/6 substrains. <i>Scientific Reports</i> , 2016 , 6, 32453	4.9	5
32	Genetic analysis of the circadian system of mammals: properties and prospects. <i>Seminars in Neuroscience</i> , 1995 , 7, 61-70		5
31	Forskolin and camptothecin induce a 30 kDa protein associated with melatonin production in Y79 human retinoblastoma cells. <i>Journal of Neuroscience</i> , 1995 , 15, 298-309	6.6	5
30	Sleeping Sickness: A Tale of Two Clocks. Frontiers in Cellular and Infection Microbiology, 2020 , 10, 52509	9 7 5.9	5
29	Introduction to Circadian Rhythms. Handbook of Behavioral Neurobiology, 2001, 3-6		4

28	The biological clock: itB all in the genes. <i>Progress in Brain Research</i> , 1996 , 111, 5-9	2.9	4
27	RNA synthesis inhibitors increase melatonin production in Y79 human retinoblastoma cells. <i>Molecular Brain Research</i> , 1994 , 23, 47-56		4
26	Biological Rhythms: From Gene Expression to Behavior 1993 , 3-20		4
25	Chapter 2.1.7 Genetic dissection of mouse behavior using induced mutagenesis. <i>Handbook of Behavioral Neuroscience</i> , 1999 , 147-165		3
24	Synchronization between peripheral circadian clock and feeding-fasting cycles in microfluidic device sustains oscillatory pattern of transcriptome. <i>Nature Communications</i> , 2021 , 12, 6185	17.4	3
23	Natural antisense transcript of regulates the amplitude of the mouse circadian clock. <i>Genes and Development</i> , 2021 , 35, 899-913	12.6	3
22	Alterations in the circadian system in advanced age. <i>Novartis Foundation Symposium</i> , 1995 , 183, 212-26; discussion 226-34		3
21	Mouse chimeras and their application to circadian biology. <i>Methods in Enzymology</i> , 2005 , 393, 478-92	1.7	2
20	The Mouse Clock Locus: Sequence and Comparative Analysis of 204 Kb from Mouse Chromosome 5. <i>Genome Research</i> , 2000 , 10, 1928-1940	9.7	2
19	Adverse impact of polyphasic sleep patterns in humans: Report of the National Sleep Foundation sleep timing and variability consensus panel. <i>Sleep Health</i> , 2021 , 7, 293-302	4	2
18	Tissue-specific FAH deficiency alters sleep-wake patterns and results in chronic tyrosinemia in mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 22229-22230	5 ^{11.5}	2
17	A Hyperkinetic Redox Sensor Drives Flies to Sleep. <i>Trends in Neurosciences</i> , 2019 , 42, 514-517	13.3	1
16	Phase-Resetting Sensitivity of the Suprachiasmatic Nucleus and Oscillator Amplitude: Reply to Letter by Ruby. <i>Journal of Biological Rhythms</i> , 2011 , 26, 371-373	3.2	1
15	Biography of Joseph S. Takahashi. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 5336-8	11.5	1
14	Photic threshold for stimulation of testicular growth and pituitary FSH release in male Djungarian hamsters. <i>Brain Research</i> , 1990 , 512, 304-8	3.7	1
13	Mean-Variance QTL Mapping Identifies Novel QTL for Circadian Activity and Exploratory Behavior in Mice		1
12	Tissue-specific BMAL1 cistromes reveal that enhancer-enhancer interactions regulate rhythmic transcri	ption	1
11	Cell-autonomous regulation of astrocyte activation by the circadian clock protein BMAL1		1

10	Sleeping Sickness Disrupts the Sleep-Regulating Adenosine System. <i>Journal of Neuroscience</i> , 2020 , 40, 9306-9316	6.6	1
9	Genetic analysis of activity, brain and behavioral associations in extended families with heavy genetic loading for bipolar disorder. <i>Psychological Medicine</i> , 2021 , 51, 494-502	6.9	1
8	The 50th anniversary of the Konopka and Benzer 1971 paper in PNAS: "Clock Mutants of ". <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
7	Introduction to the Clock System. Advances in Experimental Medicine and Biology, 2021, 1344, 3-20	3.6	O
6	A novel mutation in Slc2a4 as a mouse model of fatigue. <i>Genes, Brain and Behavior</i> , 2019 , 18, e12578	3.6	
5	Genetic control of the circadian pacemaker119-126		
4	Circadian alignment of feeding regulates lifespan extension by caloric restriction. <i>Innovation in Aging</i> , 2021 , 5, 116-116	0.1	
3	Michael Menaker (1934-2021). Journal of Biological Rhythms, 2021 , 36, 495-498	3.2	
2	Light Regulates c-fos Gene Expression in the Hamster SCN: Implications for Circadian and Seasonal Control of Reproduction 1992 , 95-106		