Nanna Myllys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7364791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass spectrometer. Atmospheric Measurement Techniques, 2022, 15, 11-19.	1.2	7
2	Microscopic Insights Into the Formation of Methanesulfonic Acid–Methylamine–Ammonia Particles Under Acid-Rich Conditions. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	1
3	Experimental and Theoretical Study on the Enhancement of Alkanolamines on Sulfuric Acid Nucleation. Journal of Physical Chemistry A, 2022, 126, 4057-4067.	1.1	4
4	Atmospheric clusters to nanoparticles: Recent progress and challenges in closing the gap in chemical composition. Journal of Aerosol Science, 2021, 153, 105733.	1.8	35
5	Molecular properties affecting the hydration of acid–base clusters. Physical Chemistry Chemical Physics, 2021, 23, 13106-13114.	1.3	11
6	A predictive model for salt nanoparticle formation using heterodimer stability calculations. Atmospheric Chemistry and Physics, 2021, 21, 11637-11654.	1.9	14
7	Enhancing Potential of Trimethylamine Oxide on Atmospheric Particle Formation. Atmosphere, 2020, 11, 35.	1.0	15
8	<i>Ab initio</i> metadynamics calculations of dimethylamine for probing p <i>K</i> _b variations in bulk <i>vs.</i> surface environments. Physical Chemistry Chemical Physics, 2020, 22, 26265-26277.	1.3	17
9	Formation of Highly Oxidized Molecules from NO ₃ Radical Initiated Oxidation of Δ-3-Carene: A Mechanistic Study. ACS Earth and Space Chemistry, 2019, 3, 1460-1470.	1.2	28
10	Role of base strength, cluster structure and charge in sulfuric-acid-driven particle formation. Atmospheric Chemistry and Physics, 2019, 19, 9753-9768.	1.9	49
11	Configurational Sampling of Noncovalent (Atmospheric) Molecular Clusters: Sulfuric Acid and Guanidine. Journal of Physical Chemistry A, 2019, 123, 6022-6033.	1.1	54
12	An Experimental and Modeling Study of Nanoparticle Formation and Growth from Dimethylamine and Nitric Acid. Journal of Physical Chemistry A, 2019, 123, 5640-5648.	1.1	29
13	How well can we predict cluster fragmentation inside a mass spectrometer?. Chemical Communications, 2019, 55, 5946-5949.	2.2	43
14	Molecular-Level Understanding of Synergistic Effects in Sulfuric Acid–Amine–Ammonia Mixed Clusters. Journal of Physical Chemistry A, 2019, 123, 2420-2425.	1.1	57
15	Modeling on Fragmentation of Clusters inside a Mass Spectrometer. Journal of Physical Chemistry A, 2019, 123, 611-624.	1.1	32
16	Guanidine: A Highly Efficient Stabilizer in Atmospheric New-Particle Formation. Journal of Physical Chemistry A, 2018, 122, 4717-4729.	1.1	32
17	Closed-Shell Organic Compounds Might Form Dimers at the Surface of Molecular Clusters. Journal of Physical Chemistry A, 2018, 122, 1771-1780.	1.1	16
18	A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols. Atmospheric Measurement Techniques, 2018, 11, 49-63.	1.2	41

NANNA MYLLYS

#	Article	IF	CITATIONS
19	Chemical Characterization of Gas- and Particle-Phase Products from the Ozonolysis of α-Pinene in the Presence of Dimethylamine. Environmental Science & Technology, 2017, 51, 5602-5610.	4.6	25
20	Effect of Bisulfate, Ammonia, and Ammonium on the Clustering of Organic Acids and Sulfuric Acid. Journal of Physical Chemistry A, 2017, 121, 4812-4824.	1.1	35
21	What Is Required for Highly Oxidized Molecules To Form Clusters with Sulfuric Acid?. Journal of Physical Chemistry A, 2017, 121, 4578-4587.	1.1	56
22	Formation of atmospheric molecular clusters consisting of sulfuric acid and C ₈ H ₁₂ O ₆ tricarboxylic acid. Physical Chemistry Chemical Physics, 2017, 19, 4877-4886.	1.3	47
23	Phosphoric acid – a potentially elusive participant in atmospheric new particle formation. Molecular Physics, 2017, 115, 2168-2179.	0.8	15
24	Atmospheric Fate of Monoethanolamine: Enhancing New Particle Formation of Sulfuric Acid as an Important Removal Process. Environmental Science & Technology, 2017, 51, 8422-8431.	4.6	95
25	The Effect of Water and Bases on the Clustering of a Cyclohexene Autoxidation Product C ₆ H ₈ O ₇ with Sulfuric Acid. Journal of Physical Chemistry A, 2016, 120, 2240-2249.	1.1	30
26	Infrared Spectrum of Toluene: Comparison of Anharmonic Isolated-Molecule Calculations and Experiments in Liquid Phase and in a Ne Matrix. Journal of Physical Chemistry A, 2016, 120, 3380-3389.	1.1	16
27	Density functional theory basis set convergence of sulfuric acid-containing molecular clusters. Computational and Theoretical Chemistry, 2016, 1098, 1-12.	1.1	53
28	Coupled Cluster Evaluation of the Stability of Atmospheric Acid–Base Clusters with up to 10 Molecules. Journal of Physical Chemistry A, 2016, 120, 621-630.	1.1	83
29	Computational Study of the Clustering of a Cyclohexene Autoxidation Product C ₆ H ₈ O ₇ with Itself and Sulfuric Acid. Journal of Physical Chemistry A, 2015, 119, 8414-8421.	1.1	45