
Caren Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7364732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19486-19491.	7.1	539
2	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	28.9	420
3	Arabidopsis RGL1 Encodes a Negative Regulator of Gibberellin Responses. Plant Cell, 2002, 14, 87-100.	6.6	298
4	A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotechnology, 1997, 15, 444-447.	17.5	295
5	The Two-Component System1. Plant Physiology, 1998, 117, 723-731.	4.8	241
6	Ethylene signaling: new levels of complexity and regulation. Current Opinion in Plant Biology, 2008, 11, 479-485.	7.1	240
7	Conservation of ethylene as a plant hormone over 450 million years of evolution. Nature Plants, 2015, 1, 14004.	9.3	207
8	Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant Physiology, 2015, 169, 85-95.	4.8	198
9	From The Cover: REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7917-7922.	7.1	185
10	The ethylene-response pathway: signal perception to gene regulation. Current Opinion in Plant Biology, 1999, 2, 352-358.	7.1	163
11	Ethylene hormone receptor action inArabidopsis. BioEssays, 2001, 23, 619-627.	2.5	159
12	ldentification of Important Regions for Ethylene Binding and Signaling in the Transmembrane Domain of the ETR1 Ethylene Receptor of Arabidopsis. Plant Cell, 2007, 18, 3429-3442.	6.6	156
13	Heteromeric Interactions among Ethylene Receptors Mediate Signaling in Arabidopsis. Journal of Biological Chemistry, 2008, 283, 23801-23810.	3.4	131
14	An integrated genetic/RFLP map of theArabidopsis thalianagenome. Plant Journal, 1993, 3, 745-754.	5.7	123
15	Subcellular coâ€localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant Journal, 2008, 53, 275-286.	5.7	120
16	Accumulation of γ- Rather than α-Tocopherol Alters Ethylene Signaling Gene Expression in the vte4 Mutant of Arabidopsis thaliana. Plant and Cell Physiology, 2011, 52, 1389-1400.	3.1	111
17	The Arabidopsis eer1 Mutant Has Enhanced Ethylene Responses in the Hypocotyl and Stem. Plant Physiology, 2001, 125, 1061-1073.	4.8	99
18	To grow old: regulatory role of ethylene and jasmonic acid in senescence. Frontiers in Plant Science, 2015, 6, 20.	3.6	99

CAREN CHANG

#	Article	IF	CITATIONS
19	Field Guide to Plant Model Systems. Cell, 2016, 167, 325-339.	28.9	99
20	History of Research on the Plant Hormone Ethylene. Journal of Plant Growth Regulation, 2015, 34, 809-827.	5.1	86
21	Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nature Communications, 2020, 11, 4082.	12.8	86
22	Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1. Journal of Biological Chemistry, 2010, 285, 40706-40713.	3.4	85
23	Involvement of <i>RTE1</i> in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant Journal, 2008, 56, 423-431.	5.7	77
24	Q&A: How do plants respond to ethylene and what is its importance?. BMC Biology, 2016, 14, 7.	3.8	76
25	Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Molecular BioSystems, 2011, 7, 2637.	2.9	71
26	Evidence for a Plastid Origin of Plant Ethylene Receptor Genes. Plant Physiology, 2002, 130, 10-14.	4.8	60
27	Ethylene signaling: the MAPK module has finally landed. Trends in Plant Science, 2003, 8, 365-368.	8.8	57
28	Ethylene Biology. More Than a Gas. Plant Physiology, 2004, 136, 2895-2899.	4.8	55
29	Transcriptome Profiling of the Green Alga <i>Spirogyra pratensis</i> (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses. Plant Physiology, 2016, 172, 533-545.	4.8	52
30	Ethylene-independent functions of the ethylene precursor ACC in Marchantia polymorpha. Nature Plants, 2020, 6, 1335-1344.	9.3	46
31	Advances in ethylene signalling: protein complexes at the endoplasmic reticulum membrane. AoB PLANTS, 2012, 2012, pls031-pls031.	2.3	45
32	Association of cytochromeÂ <i>b</i> ₅ with <scp>ETR</scp> 1 ethylene receptor signaling through <scp>RTE</scp> 1 in <scp>A</scp> rabidopsis. Plant Journal, 2014, 77, 558-567.	5.7	44
33	The role of protein turnover in ethylene biosynthesis and response. Plant Science, 2008, 175, 24-31.	3.6	41
34	ETR1-Specific Mutations Distinguish ETR1 from Other Arabidopsis Ethylene Receptors as Revealed by Genetic Interaction with RTE1 Å Â Â. Plant Physiology, 2009, 150, 547-551.	4.8	34
35	Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress. Journal of Plant Physiology, 2012, 169, 360-368.	3.5	31
36	The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide. Journal of Experimental Botany, 2018, 69, 3009-3021.	4.8	31

CAREN CHANG

#	Article	IF	CITATIONS
37	Establishment of Dimethyl Labeling-based Quantitative Acetylproteomics in Arabidopsis. Molecular and Cellular Proteomics, 2018, 17, 1010-1027.	3.8	31
38	Something old, something new: Conservation of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid as a signaling molecule. Current Opinion in Plant Biology, 2022, 65, 102116.	7.1	28
39	Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate. Frontiers in Plant Science, 2016, 7, 125.	3.6	26
40	Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. Plant Molecular Biology, 2016, 91, 471-484.	3.9	21
41	<i>Arabidopsis</i> CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor. Journal of Integrative Plant Biology, 2017, 59, 810-824.	8.5	20
42	Plant genome studies: restriction fragment length polymorphism and chromosome mapping information. Current Opinion in Genetics and Development, 1991, 1, 112-118.	3.3	17
43	Land Plant Model Systems Branch Out. Cell, 2017, 171, 265-266.	28.9	13
44	Affinity Purification and Mass Spectrometry: An Attractive Choice to Investigate Protein-Protein Interactions in Plant Immunity. Current Proteomics, 2010, 7, 258-264.	0.3	11
45	Proteomic Pleiotropy of <i>OpgGH</i> , an Operon Necessary for Efficient Growth of <i>Salmonella enterica</i> serovar Typhimurium under Low-Osmotic Conditions. Journal of Proteome Research, 2012, 11, 1720-1727.	3.7	11
46	Molecular association of Arabidopsis RTH with its homolog RTE1 in regulating ethylene signaling. Journal of Experimental Botany, 2017, 68, 2821-2832.	4.8	10
47	Molecular cloning approach for a putative ethylene receptor gene in Arabidopsis. Biochemical Society Transactions, 1992, 20, 73-75.	3.4	7
48	Ethylene is all around. Frontiers in Plant Science, 2015, 6, 76.	3.6	6
49	Functional complementation of the Schizosaccharomyces pombe wis1 mutant by Arabidopsis MEK1 and non-catalytic enhancement by CTR1. FEBS Letters, 1999, 459, 405-410.	2.8	5
50	Ethylene Biosynthesis, Perception, and Response. Journal of Plant Growth Regulation, 2007, 26, 89-91.	5.1	4
51	1â€Aminocyclopropaneâ€1â€carboxylic acid stimulates tomato pollen tube growth independently of ethylene receptors. Physiologia Plantarum, 2021, 173, 2291-2297.	5.2	3
52	Ferret: a sentence-based literature scanning system. BMC Bioinformatics, 2015, 16, 198.	2.6	2
53	Editorial: Ethylene Biology and Beyond: Novel Insights in the Ethylene Pathway and Its Interactions. Frontiers in Plant Science, 2020, 11, 248.	3.6	2
54	Ethylene Signaling from the Endoplasmic Reticulum Membrane to the Nucleus. , 2015, , 93-108.		1

#	Article	IF	CITATIONS
55	A novel membrane protein conserved in plants and animals is important for ethylene receptor function in Arabidopsis thaliana. , 2007, , 9-14.		1
56	Is losing ethylene a losing game?. Molecular Plant, 2022, , .	8.3	1
57	From cell to organism across space and time. Current Opinion in Plant Biology, 2013, 16, 542-544.	7.1	Ο
58	Moving toward Light in Response to a Gas: A Novel Cyanobacterial Ethylene Receptor. Plant Physiology, 2016, 171, 2279-2279.	4.8	0