Arno P Parviainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7364324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting Cellulose Solvating Capabilities of Acid–Base Conjugate Ionic Liquids. ChemSusChem, 2013, 6, 2161-2169.	6.8	121
2	Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Advances, 2012, 2, 8020.	3.6	72
3	Sustainability of cellulose dissolution and regeneration in 1,5-diazabicyclo[4.3.0]non-5-enium acetate: a batch simulation of the IONCELL-F process. RSC Advances, 2015, 5, 69728-69737.	3.6	60
4	Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges. Advances in Polymer Science, 2015, , 133-168.	0.8	58
5	Dissolution enthalpies of cellulose in ionic liquids. Carbohydrate Polymers, 2014, 113, 67-76.	10.2	36
6	Efficiency of hydrophobic phosphonium ionic liquids and DMSO as recyclable cellulose dissolution and regeneration media. RSC Advances, 2017, 7, 17451-17461.	3.6	36
7	On the solubility of wood in non-derivatising ionic liquids. Green Chemistry, 2013, 15, 2374.	9.0	35
8	Cellulose hydrolysis with thermo- and alkali-tolerant cellulases in cellulose-dissolving superbase ionic liquids. RSC Advances, 2013, 3, 20001.	3.6	26
9	Application of mild autohydrolysis to facilitate the dissolution of wood chips in direct-dissolution solvents. Green Chemistry, 2016, 18, 3286-3294.	9.0	26
10	Iron atalysed Selective Aerobic Oxidation of Alcohols to Carbonyl and Carboxylic Compounds. ChemPlusChem, 2016, 81, 1160-1165.	2.8	22
11	Selective Aerobic Oxidation of Alcohols with NO ₃ ^{â^'} Activated Nitroxyl Radical/Manganese Catalyst System. ChemCatChem, 2018, 10, 2908-2914.	3.7	20
12	Practical Aerobic Oxidation of Alcohols: A Ligandâ€Enhanced 2,2,6,6â€Tetramethylpiperidineâ€1â€oxy/Manganese Nitrate Catalyst System. ChemCatChem, 2017, 9, 3880-388	3 ^{3.7}	17
13	Inhibition of hyperthermostable xylanases by superbase ionic liquids. Process Biochemistry, 2020, 95, 148-156.	3.7	10
14	Transition metal triflate catalyzed conversion of alcohols, ethers and esters to olefins. RSC Advances, 2018, 8, 15111-15118.	3.6	8
15	Screening of glycoside hydrolases and ionic liquids for fibre modification. Journal of Chemical Technology and Biotechnology, 2018, 93, 818-826.	3.2	3