

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7364256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FMRP promotes transcription-coupled homologous recombination via facilitating TET1-mediated m5C RNA modification demethylation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116251119.	7.1	37
2	DNA repair defects in cancer and therapeutic opportunities. Genes and Development, 2022, 36, 278-293.	5.9	45
3	Sources, resolution and physiological relevance of R-loops and RNA–DNA hybrids. Nature Reviews Molecular Cell Biology, 2022, 23, 521-540.	37.0	108
4	Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies. Molecular Cell, 2021, 81, 1027-1042.e4.	9.7	55
5	RNA transcripts stimulate homologous recombination by forming DR-loops. Nature, 2021, 594, 283-288.	27.8	88
6	Ubiquitination-mediated degradation of TRDMT1 regulates homologous recombination and therapeutic response. NAR Cancer, 2021, 3, zcab010.	3.1	10
7	An R-loop-initiated CSB–RAD52–POLD3 pathway suppresses ROS-induced telomeric DNA breaks. Nucleic Acids Research, 2020, 48, 1285-1300.	14.5	60
8	cGAS suppresses genomic instability as a decelerator of replication forks. Science Advances, 2020, 6, .	10.3	79
9	The deacetylase SIRT6 promotes the repair of UV-induced DNA damage by targeting DDB2. Nucleic Acids Research, 2020, 48, 9181-9194.	14.5	33
10	m5C modification of mRNA serves a DNA damage code to promote homologous recombination. Nature Communications, 2020, 11, 2834.	12.8	99
11	Resolution of ROSâ€induced Gâ€quadruplexes and Râ€loops at transcriptionally active sites is dependent on BLM helicase. FEBS Letters, 2020, 594, 1359-1367.	2.8	30
12	The DNA secondary structures at telomeres and genome instability. Cell and Bioscience, 2020, 10, 47.	4.8	34
13	Cigarette smoke exposure enhances transforming acidic coiled-coil–containing protein 2 turnover and thereby promotes emphysema. JCI Insight, 2020, 5, .	5.0	13
14	An ordered assembly of MYH glycosylase, SIRT6 protein deacetylase, and Rad9-Rad1-Hus1 checkpoint clamp at oxidatively damaged telomeres. Aging, 2020, 12, 17761-17785.	3.1	9
15	Alternative Lengthening of Telomeres through Two Distinct Break-Induced Replication Pathways. Cell Reports, 2019, 26, 955-968.e3.	6.4	194
16	Phosphatase 1 Nuclear Targeting Subunit Mediates Recruitment and Function of Poly (ADP-Ribose) Polymerase 1 in DNA Repair. Cancer Research, 2019, 79, 2526-2535.	0.9	8
17	Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination. Genes and Development, 2019, 33, 75-89.	5.9	18
18	Binding of FANCI-FANCD2 Complex to RNA and R-Loops Stimulates Robust FANCD2 Monoubiquitination. Cell Reports, 2019, 26, 564-572.e5.	6.4	65

#	Article	IF	CITATIONS
19	RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. Journal of Biological Chemistry, 2018, 293, 1353-1362.	3.4	69
20	SIRT6 facilitates directional telomere movement upon oxidative damage. Scientific Reports, 2018, 8, 5407.	3.3	20
21	ELL2 regulates DNA non-homologous end joining (NHEJ) repair in prostate cancer cells. Cancer Letters, 2018, 415, 198-207.	7.2	13
22	Quantifying site-specific chromatin mechanics and DNA damage response. Scientific Reports, 2018, 8, 18084.	3.3	13
23	ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nature Communications, 2018, 9, 4115.	12.8	120
24	Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1. Molecular Cell, 2017, 65, 818-831.e5.	9.7	44
25	SSRP1 Cooperates with PARP and XRCC1 to Facilitate Single-Strand DNA Break Repair by Chromatin Priming. Cancer Research, 2017, 77, 2674-2685.	0.9	38
26	Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins. Methods in Molecular Biology, 2017, 1587, 139-146.	0.9	4
27	Regulation of DNA break repair by transcription and RNA. Science China Life Sciences, 2017, 60, 1081-1086.	4.9	10
28	The oxidative DNA damage response: A review of research undertaken with Tsinghua and Xiangya students at the University of Pittsburgh. Science China Life Sciences, 2017, 60, 1077-1080.	4.9	23
29	Cleavage of Ku80 by caspase-2 promotes non-homologous end joining-mediated DNA repair. DNA Repair, 2017, 60, 18-28.	2.8	9
30	Temporal Relationship Between Hyperuricemia and Insulin Resistance and Its Impact on Future Risk of Hypertension. Hypertension, 2017, 70, 703-711.	2.7	84
31	Tankyrase1-mediated poly(ADP-ribosyl)ation of TRF1 maintains cell survival after telomeric DNA damage. Nucleic Acids Research, 2017, 45, 3906-3921.	14.5	21
32	WRN is recruited to damaged telomeres via its RQC domain and tankyrase1-mediated poly-ADP-ribosylation of TRF1. Nucleic Acids Research, 2017, 45, 3844-3859.	14.5	15
33	POT1 inhibits the efficiency but promotes the fidelity of nonhomologous end joining at non-telomeric DNA regions. Aging, 2017, 9, 2529-2543.	3.1	15
34	Guarding chromosomes from oxidative DNA damage to the very end. Acta Biochimica Et Biophysica Sinica, 2016, 48, 617-622.	2.0	12
35	Transcription-coupled homologous recombination after oxidative damage. DNA Repair, 2016, 44, 76-80.	2.8	20
36	The Lys63-deubiquitylating Enzyme BRCC36 Limits DNA Break Processing and Repair. Journal of Biological Chemistry, 2016, 291, 16197-16207.	3.4	35

#	Article	IF	CITATIONS
37	Fast and Precise 3D Fluorophore Localization based on Gradient Fitting. Scientific Reports, 2015, 5, 14335.	3.3	28
38	The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases: Study Design and Baseline Characteristics. PLoS ONE, 2015, 10, e0122598.	2.5	28
39	Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response. Cell Research, 2015, 25, 225-236.	12.0	54
40	Regulation of DNA Damage Signaling and Cell Death Responses by Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) and LMP2A in Nasopharyngeal Carcinoma Cells. Journal of Virology, 2015, 89, 7612-7624.	3.4	23
41	Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death. Nucleic Acids Research, 2015, 43, 6334-6347.	14.5	68
42	ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors. Cancer Discovery, 2015, 5, 752-767.	9.4	361
43	Differential Phosphorylation of DNA-PKcs Regulates the Interplay between End-Processing and End-Ligation during Nonhomologous End-Joining. Molecular Cell, 2015, 58, 172-185.	9.7	168
44	Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nature Communications, 2015, 6, 8419.	12.8	107
45	Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway. Nature Communications, 2015, 6, 6233.	12.8	144
46	SIRT6 protein deacetylase interacts with MYH DNA glycosylase, APE1 endonuclease, and Rad9–Rad1–Hus1 checkpoint clamp. BMC Molecular Biology, 2015, 16, 12.	3.0	41
47	DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3495-504.	7.1	123
48	RAD6 Promotes Homologous Recombination Repair by Activating the Autophagy-Mediated Degradation of Heterochromatin Protein HP1. Molecular and Cellular Biology, 2015, 35, 406-416.	2.3	39
49	Novel method for site-specific induction of oxidative DNA damage reveals differences in recruitment of repair proteins to heterochromatin and euchromatin. Nucleic Acids Research, 2014, 42, 2330-2345.	14.5	79
50	HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase \hat{l}^2 . Nature Communications, 2014, 5, 5513.	12.8	96
51	A chemical probe targets DNA 5-formylcytosine sites and inhibits TDG excision, polymerases bypass, and gene expression. Chemical Science, 2014, 5, 567-574.	7.4	29
52	Ubiquitin-Specific Protease 5 Is Required for the Efficient Repair of DNA Double-Strand Breaks. PLoS ONE, 2014, 9, e84899.	2.5	50
53	Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose). Journal of Cell Science, 2013, 126, 4414-4423.	2.0	78
54	Monoubiquitinated Histone H2A Destabilizes Photolesion-containing Nucleosomes with Concomitant Release of UV-damaged DNA-binding Protein E3 Ligase. Journal of Biological Chemistry, 2012, 287, 12036-12049.	3.4	49

#	Article	IF	CITATIONS
55	Residual APCs Are Critical for the More Potent Immune Response Following the Engraftment of Older Organs. Transplantation, 2012, 94, 462.	1.0	0
56	Consequences of Aging on Memory CD4 T-Cell Responses. Transplantation, 2012, 94, 452.	1.0	0
57	Residual APCs Are Critical for the More Potent Immune Response Following the Engraftment of Older Organs. Transplantation, 2012, 94, 112.	1.0	0
58	BRCA1 contributes to transcription oupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein. Cancer Science, 2011, 102, 1840-1847.	3.9	41
59	DNA polymerase β-dependent long patch base excision repair in living cells. DNA Repair, 2010, 9, 109-119.	2.8	45
60	The ACF1 Complex Is Required for DNA Double-Strand Break Repair in Human Cells. Molecular Cell, 2010, 40, 976-987.	9.7	182
61	A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell. Nucleic Acids Research, 2008, 36, 2939-2947.	14.5	89
62	Rapid Recruitment of BRCA1 to DNA Double-Strand Breaks Is Dependent on Its Association with Ku80. Molecular and Cellular Biology, 2008, 28, 7380-7393.	2.3	65
63	Recruitment of mismatch repair proteins to the site of DNA damage in human cells. Journal of Cell Science, 2008, 121, 3146-3154.	2.0	69
64	Werner syndrome protein interacts functionally with translesion DNA polymerases. Proceedings of the United States of America, 2007, 104, 10394-10399.	7.1	54
65	DNA single-strand break repair is impaired in aprataxin-related ataxia. Annals of Neurology, 2007, 61, 162-174.	5.3	71
66	A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses. EMBO Journal, 2007, 26, 2094-2103.	7.8	127
67	BLM is an early responder to DNA double-strand breaks. Biochemical and Biophysical Research Communications, 2006, 348, 62-69.	2.1	64
68	Vertebrate POLQ and POLÎ ² Cooperate in Base Excision Repair of Oxidative DNA Damage. Molecular Cell, 2006, 24, 115-125.	9.7	119
69	Replication-dependent and -independent Responses of RAD18 to DNA Damage in Human Cells. Journal of Biological Chemistry, 2006, 281, 34687-34695.	3.4	53
70	Accumulation of Werner protein at DNA double-strand breaks in human cells. Journal of Cell Science, 2005, 118, 4153-4162.	2.0	121
71	DNA Polymerase λ Protects Mouse Fibroblasts against Oxidative DNA Damage and Is Recruited to Sites of DNA Damage/Repair. Journal of Biological Chemistry, 2005, 280, 31641-31647.	3.4	101
72	MSH2–MSH6 stimulates DNA polymerase Î∙, suggesting a role for A:T mutations in antibody genes. Journal of Experimental Medicine, 2005, 201, 637-645.	8.5	175

#	Article	IF	CITATIONS
73	Translocation of XRCC1 and DNA ligase IIIÂ from centrosomes to chromosomes in response to DNA damage in mitotic human cells. Nucleic Acids Research, 2005, 33, 422-429.	14.5	45
74	In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13738-13743.	7.1	284
75	UV Light-induced DNA Damage and Tolerance for the Survival of Nucleotide Excision Repair-deficient Human Cells. Journal of Biological Chemistry, 2004, 279, 46674-46677.	3.4	78
76	Functional and physical interactions between ERCC1 and MSH2 complexes for resistance to cis-diamminedichloroplatinum(II) in mammalian cells. DNA Repair, 2004, 3, 135-143.	2.8	50
77	Spatial and Temporal Cellular Responses to Single-Strand Breaks in Human Cells. Molecular and Cellular Biology, 2003, 23, 3974-3981.	2.3	307
78	Phosphatidylinositol 3-kinase and protein kinase C are required for the inhibition of caspase activity by epidermal growth factor. FEBS Letters, 1999, 444, 90-96.	2.8	28
79	SIRT6 Regulates Telomere Movement in the Presence and Absence of Oxidative Damage. SSRN Electronic Journal, 0, , .	0.4	0