Dmitrii Andreev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7364165/publications.pdf

Version: 2024-02-01

		1040056	1125743
57	251	9	13
papers	citations	h-index	g-index
57	57	57	129
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of Carbon Content on the Combustion and Chemical Conversion of Thermite Mixtures Based on Co ₃ O ₄ /Cr ₂ O ₃ /Nb&with Al. Fizika Goreniya I Vzryva, 2022, 58, 70-75.	.l tņso b>	2
2	Influence of Magnetic Fields Assisted for Preparation of Ferromagnetic Mono- and Bi-Metallic Co and Co–V SHS Catalysts on Their Activity in Deep Oxidation and Hydrogenation of CO2. Metals, 2022, 12, 166.	2.3	0
3	Effect of Carbon Content on the Combustion and Chemical Transformation of Thermite Mixtures Based on Co3O4/Cr2O3/Nb2O5Âwith Al. Combustion, Explosion and Shock Waves, 2022, 58, 62-67.	0.8	O
4	Magnetic-Field-Assisted Preparation of Ferromagnetic Ni–Co–Mn Catalyst for Deep Oxidation/Hydrogenation from a Mixture of SHS-Produced Intermetallics. International Journal of Self-Propagating High-Temperature Synthesis, 2021, 30, 106-110.	0.5	2
5	Co-Based Superalloys by Metallothermic SHS: Influence of Graphite Addition. International Journal of Self-Propagating High-Temperature Synthesis, 2021, 30, 125-126.	0.5	O
6	Moâ∈"Nbâ∈"Siâ∈"B Alloy: Synthesis, Composition, and Structure. Metals, 2021, 11, 803.	2.3	2
7	Reactive Ni–Al-Based Materials: Strength and Combustion Behavior. Metals, 2021, 11, 949.	2.3	14
8	General Aspects of the Combustion Synthesis of a Cobalt Alloy with Dispersion and Precipitation Modification. Inorganic Materials, 2021, 57, 727-732.	0.8	0
9	Cast MoSiBTiC Composites by Metallothermic SHS: Influence of Ti and C Dopants. International Journal of Self-Propagating High-Temperature Synthesis, 2021, 30, 153-158.	0.5	O
10	Co-Based Composite by Centrifugal SHS: Impact of Alloying Agents. International Journal of Self-Propagating High-Temperature Synthesis, 2021, 30, 271-272.	0.5	0
11	SHS of Co and Co–V Catalysts for Deep Oxidation/Hydrogenation Processes. International Journal of Self-Propagating High-Temperature Synthesis, 2021, 30, 231-235.	0.5	1
12	Centrifugal SHS Surfacing of Titanium Substrate with MoSiB. International Journal of Self-Propagating High-Temperature Synthesis, 2021, 30, 269-270.	0.5	0
13	Centrifugal SHS Metallurgy of Cast Co-Cr-Fe-Ni-Mn High-Entropy Alloys Strengthened by Precipitates Based on Mo and Nb Borides and Silicides. Physical Mesomechanics, 2021, 24, 692-700.	1.9	O
14	Comparative Investigation of the Structure, Phase Composition, and Mechanical Properties of Ni-Based High-Temperature Alloys Manufactured by Different Methods. Inorganic Materials: Applied Research, 2020, 11, 713-720.	0.5	0
15	Centrifugal Metallothermic SHS of Cast Co–Cr–Fe–Ni–Mn–(Đ¥) Alloys. Russian Journal of Non-Ferrous Metals, 2020, 61, 436-445.	0.6	7
16	SHS Introduction of Nitrogen in the Composition of Alloy Steel under Gas Pressure. Russian Metallurgy (Metally), 2020, 2020, 1027-1031.	0.5	0
17	Tailoring the Composition and Structure of Nb-, Si-, and B-Doped Mo-Based Composite Materials in the Self-Propagating High-Temperature Synthesis Metallurgy Process. Inorganic Materials, 2020, 56, 1265-1270.	0.8	2
18	Centrifugal SHS-Metallurgy of Composite Materials Mo–Si–B. Russian Journal of Physical Chemistry B, 2020, 14, 261-265.	1.3	6

#	Article	IF	Citations
19	Dispersion Strengthened Mo-Based Cast Composite by Centrifugal SHS. International Journal of Self-Propagating High-Temperature Synthesis, 2020, 29, 49-51.	0.5	O
20	SHS-Produced Polymetallic Co–Cu–La Catalysts for Deep Oxidation/Hydrogenation Processes. International Journal of Self-Propagating High-Temperature Synthesis, 2020, 29, 240-242.	0.5	0
21	Autowave Synthesis of TiAl-Based Cast Composite Materials from Thermite-Type Mixtures. Inorganic Materials, 2019, 55, 417-422.	0.8	2
22	Mill scale recycling by SHS metallurgy for production of cast ferrosilicon and ferrosilicoaluminium. IOP Conference Series: Materials Science and Engineering, 2019, 558, 012041.	0.6	9
23	Synthesis and investigation of highly dispersed active phases of intermetallic and supported SHS-catalysts. IOP Conference Series: Materials Science and Engineering, 2019, 558, 012007.	0.6	1
24	Metallothermic SHS in Conditions of Artificial Gravity: Mathematical Modeling. International Journal of Self-Propagating High-Temperature Synthesis, 2019, 28, 217-220.	0.5	0
25	Mo-Based Composites Reinforced with Nb, Si, and B by Metallothermic SHS under Artificial Gravity. International Journal of Self-Propagating High-Temperature Synthesis, 2019, 28, 274-275.	0.5	2
26	Production of Mo2NiB2 Based Hard Alloys by Self-Propagating High-Temperature Synthesis. High Temperature Materials and Processes, 2019, 38, 683-691.	1.4	5
27	Combustion of Titanium Oxide Based Thermite Systems with a Complex Reducing Agent and an Energy Additive under the Influence of Overload. Combustion, Explosion and Shock Waves, 2019, 55, 671-677.	0.8	2
28	SHS Metallurgy of Composite Materials Based on the Nb–Si System. Russian Journal of Non-Ferrous Metals, 2018, 59, 42-49.	0.6	1
29	Gravity-Assisted Metallothermic SHS of Titanium Aluminide with Al–Ca Mixture as a Reducing Agent. International Journal of Self-Propagating High-Temperature Synthesis, 2018, 27, 89-91.	0.5	1
30	Centrifugal SHS-metallurgy of nitrogen steels. Letters on Materials, 2018, 8, 499-503.	0.7	2
31	Energy stimulation of autowave synthesis of hafnium aluminides. Russian Journal of Physical Chemistry B, 2017, 11, 815-819.	1.3	0
32	Deep oxidation catalysts based on SHS-produced complex intermetallics. International Journal of Self-Propagating High-Temperature Synthesis, 2017, 26, 124-128.	0.5	3
33	Autowave chemical transformations of highly exothermic mixtures based on niobium oxide with aluminum. Combustion, Explosion and Shock Waves, 2017, 53, 580-584.	0.8	1
34	Combustion of a high-calorific thermite mixture on the surface of a titanium substrate. Combustion, Explosion and Shock Waves, 2017, 53, 574-579.	0.8	3
35	SHS metallurgy of high-entropy transition metal alloys. Doklady Physical Chemistry, 2016, 470, 145-149.	0.9	20
36	NiAl-based electrodes by combined use of centrifugal SHS and induction remelting. International Journal of Self-Propagating High-Temperature Synthesis, 2016, 25, 186-199.	0.5	14

3

#	Article	IF	CITATIONS
37	Iron-based polymetallic catalysts with a nanostructured surface for deep oxidation processes. Nanotechnologies in Russia, 2015, 10, 841-849.	0.7	4
38	Polymetallic catalysts for the Fischer–Tropsch synthesis and hydrodesulfurization prepared using self-propagating high-temperature synthesis. Kinetics and Catalysis, 2015, 56, 681-688.	1.0	12
39	Protective Mo2NiB2–Ni coatings by centrifugal metallothermic SHS. International Journal of Self-Propagating High-Temperature Synthesis, 2015, 24, 161-170.	0.5	6
40	Production of Al-Co-Ni Ternary Alloys by the SHS Method for Use in Nickel Based Superalloys Manufacturing. High Temperature Materials and Processes, 2015, 34, .	1.4	6
41	Centrifugal SHS of cast Ti–Al–Nb–Cr alloys. International Journal of Self-Propagating High-Temperature Synthesis, 2015, 24, 177-181.	0.5	4
42	Chemical transformations of multicomponent thermite-type mixtures in combustion waves. Doklady Physical Chemistry, 2015, 460, 6-9.	0.9	3
43	Self-propagating high-temperature synthesis of niobium silicide-based composite materials. Inorganic Materials, 2015, 51, 1251-1257.	0.8	7
44	Fabrication of cast electrodes from nanomodified nickel aluminide-based high-boron alloy to fabricate spherical powders using the plasma rotating electrode process. Russian Journal of Non-Ferrous Metals, 2015, 56, 505-515.	0.6	6
45	Cast NiAl/Ni20Al3B6 composites by centrifugal SHS. International Journal of Self-Propagating High-Temperature Synthesis, 2014, 23, 232-239.	0.5	18
46	Centrifugal SHS metallurgy of nickel aluminide-based eutectic alloys. Russian Journal of Non-Ferrous Metals, 2014, 55, 613-619.	0.6	14
47	Self-propagating high-temperature synthesis metallurgy of pipes with wear-resistant protective coating with the use of industrial wastes of metallurgy production. Russian Journal of Non-Ferrous Metals, 2013, 54, 274-279.	0.6	10
48	A new class of polymetallic catalysts based on SHS-intermetallic compounds for the synthesis of hydrocarbons from CO and H2. Doklady Physical Chemistry, 2013, 451, 167-171.	0.9	10
49	Regular features of combustion of CaO2/Al/Ti/Cr/B hybrid mixtures. Combustion, Explosion and Shock Waves, 2011, 47, 671-676.	0.8	8
50	Cermet-lined tubes from industrial wastes by centrifugal SHS. International Journal of Self-Propagating High-Temperature Synthesis, 2011, 20, 27-32.	0.5	3
51	In-situ formation of cast granules in thermit-type SHS reactions. International Journal of Self-Propagating High-Temperature Synthesis, 2011, 20, 15-19.	0.5	0
52	SHS-produced intermetallides as catalysts for deep oxidation of carbon monoxide and hydrocarbons. International Journal of Self-Propagating High-Temperature Synthesis, 2010, 19, 65-69.	0.5	4
53	Production of intermetallic catalysts of deep CO and hydrocarbon oxidation. Inorganic Materials, 2009, 45, 777-784.	0.8	6
54	Cast alloy production on the basis of titanium aluminide with centrifugal SHS method. Inorganic Materials, 2009, 45, 867-872.	0.8	10

#	Article	IF	CITATIONS
55	Features of formation and the structure, composition, and properties of electrospark coatings on the ZhS6U nickel alloy with the use of the KhTN-61 SHS-Ts alloy. Russian Journal of Non-Ferrous Metals, 2009, 50, 534-539.	0.6	4
56	Reactive sintering of Ti-Al and Ti-Al-Nb consolidated elemental blocks for use as consumable electrodes in vacuum arc melting. International Journal of Self-Propagating High-Temperature Synthesis, 2008, 17, 136-143.	0.5	1
57	Multicomponent metal catalysts for deep oxidation of carbon monoxide and hydrocarbons. Doklady Physical Chemistry, 2008, 419, 77-79.	0.9	15