Annemarie Huijser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7363289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the Particle Size on the Electron Injection Efficiency in Dye-Sensitized Nanocrystalline TiO2Films Studied by Time-Resolved Microwave Conductivity (TRMC) Measurements. Journal of Physical Chemistry C, 2007, 111, 10741-10746.	3.1	87
2	Superior Photoprotective Motifs and Mechanisms in Eumelanins Uncovered. Journal of the American Chemical Society, 2014, 136, 11626-11635.	13.7	85
3	Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives. Physical Chemistry Chemical Physics, 2011, 13, 9119.	2.8	78
4	Efficient Exciton Transport in Layers of Self-Assembled Porphyrin Derivatives. Journal of the American Chemical Society, 2008, 130, 2485-2492.	13.7	71
5	Photosensitization of TiO ₂ and SnO ₂ by Artificial Self-Assembling Mimics of the Natural Chlorosomal Bacteriochlorophylls. Journal of Physical Chemistry C, 2007, 111, 11726-11733.	3.1	57
6	Exciton Diffusion and Interfacial Charge Separation inmeso-Tetraphenylporphyrin/TiO2Bilayers:Â Effect of Ethyl Substituents. Journal of Physical Chemistry B, 2005, 109, 20166-20173.	2.6	56
7	Effects of molecular organization on exciton diffusion in thin films of bioinspired light-harvesting molecules. Journal of Materials Chemistry, 2009, 19, 6067.	6.7	47
8	Time-Dependent Photoluminescence of Nanostructured Anatase TiO ₂ and the Role of Bulk and Surface Processes. Journal of Physical Chemistry C, 2019, 123, 26653-26661.	3.1	46
9	Charge carrier dynamics in TiO2 nanoparticles at various temperatures. Chemical Physics Letters, 2008, 461, 93-96.	2.6	44
10	UV Polymerization of Oligothiophenes and Their Application in Nanostructured Heterojunction Solar Cells. Macromolecules, 2004, 37, 5557-5564.	4.8	38
11	Subtle Changes to Peripheral Ligands Enable High Turnover Numbers for Photocatalytic Hydrogen Generation with Supramolecular Photocatalysts. Inorganic Chemistry, 2016, 55, 2685-2690.	4.0	38
12	The Mechanism of Long-Range Exciton Diffusion in a Nematically Organized Porphyrin Layer. Journal of the American Chemical Society, 2008, 130, 12496-12500.	13.7	37
13	Excited-State Proton-Transfer Processes of DHICA Resolved: From Sub-Picoseconds to Nanoseconds. Journal of Physical Chemistry Letters, 2013, 4, 1383-1388.	4.6	37
14	Bottom-Up Approach to Eumelanin Photoprotection: Emission Dynamics in Parallel Sets of Water-Soluble 5,6-Dihydroxyindole-Based Model Systems. Journal of Physical Chemistry B, 2012, 116, 13151-13158.	2.6	36
15	Supramolecular bimetallic assemblies for photocatalytic hydrogen generation from water. Faraday Discussions, 2015, 185, 143-170.	3.2	35
16	UVâ€Ðissipation Mechanisms in the Eumelanin Building Block DHICA. ChemPhysChem, 2010, 11, 2424-2431.	2.1	33
17	An experimental study on the molecular organization and exciton diffusion in a bilayer of a porphyrin and poly(3-hexylthiophene). Journal of Applied Physics, 2008, 104, 034505.	2.5	28
18	Directionality of Ultrafast Electron Transfer in a Hydrogen Evolving Ru–Pd-Based Photocatalyst. Journal of Physical Chemistry C, 2014, 118, 20799-20806.	3.1	24

Annemarie Huijser

#	Article	IF	CITATIONS
19	Peripheral ligands as electron storage reservoirs and their role in enhancement of photocatalytic hydrogen generation. Chemical Communications, 2016, 52, 9371-9374.	4.1	24
20	Impact of the Anchoring Ligand on Electron Injection and Recombination Dynamics at the Interface of Novel Asymmetric Push–Pull Zinc Phthalocyanines and TiO ₂ . Journal of Physical Chemistry C, 2013, 117, 25397-25404.	3.1	18
21	Unraveling the Mechanisms of Beneficial Cu-Doping of NiO-Based Photocathodes. Journal of Physical Chemistry C, 2021, 125, 16049-16058.	3.1	16
22	Dual Role of Surface Hydroxyl Groups in the Photodynamics and Performance of NiO-Based Photocathodes. Journal of the American Chemical Society, 2022, 144, 11010-11018.	13.7	15
23	Ultrafast Photoinduced Heat Generation by Plasmonic HfN Nanoparticles. Advanced Optical Materials, 2021, 9, 2100510.	7.3	14
24	Photophysics of indole-2-carboxylic acid in an aqueous environment studied by fluorescence spectroscopy in combination with ab initio calculations. Physical Chemistry Chemical Physics, 2012, 14, 2078.	2.8	12
25	Active and passive control of zinc phthalocyanine photodynamics. Faraday Discussions, 2013, 163, 433.	3.2	11
26	Silver Nanocubes Coated in Ceria: Core/Shell Size Effects on Light-Induced Charge Transfer. ACS Applied Materials & Interfaces, 2020, 12, 1905-1912.	8.0	9
27	Effect of the structure of substituents on charge separation in meso-tetraphenylporphyrin/TiO2 bilayers. Thin Solid Films, 2006, 511-512, 208-213.	1.8	8
28	The Critical Role Played by the Catalytic Moiety in the Earlyâ€Time Photodynamics of Hydrogenâ€Generating Bimetallic Photocatalysts. ChemPhysChem, 2016, 17, 2654-2659.	2.1	8
29	Shedding Light on the Nature of Photoinduced States Formed in a Hydrogen-Generating Supramolecular RuPt Photocatalyst by Ultrafast Spectroscopy. Journal of Physical Chemistry A, 2018, 122, 6396-6406.	2.5	8
30	Hydrogenâ€Generating Ru/Pt Bimetallic Photocatalysts Based on Phenylâ€Phenanthroline Peripheral Ligands. ChemPhysChem, 2018, 19, 3084-3091.	2.1	7
31	Effect of Water Addition during Preparation on the Earlyâ€Time Photodynamics of CH ₃ NH ₃ PbI ₃ Perovskite Layers. ChemPhysChem, 2017, 18, 3320-3324.	2.1	4
32	MATERIALS FOR INTERMEDIATE-TEMPERATURE SOLID OXIDE FUEL CELLS AND FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Environmental Engineering and Management Journal, 2005, 4, 293-305.	0.6	1
33	Manipulating charge separation dynamics of zinc phthalocyanine based TiO <inf>2</inf> films through asymmetrical push-pull structures. , 2013, , .		0
34	Probing the origin of fluorescence quenching of a graphene-porphyrin hybrid material. EPJ Web of Conferences, 2013, 41, 04027.	0.3	0