Fu-Li Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7363106/publications.pdf

Version: 2024-02-01

93 papers 3,705 citations

33 h-index 57 g-index

96 all docs 96 docs citations

96 times ranked 4344 citing authors

#	Article	IF	Citations
1	The genome of <i>Clostridium kluyveri </i> i>, a strict anaerobe with unique metabolic features. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2128-2133.	7.1	409
2	Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from <i>Clostridium kluyveri</i> . Journal of Bacteriology, 2008, 190, 843-850.	2.2	379
3	Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 495-501.	3.0	170
4	Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends in Microbiology, 2006, 14, 398-405.	7.7	148
5	Effects of Light Intensity on the Growth and Lipid Accumulation of Microalga Scenedesmus sp. 11-1 Under Nitrogen Limitation. Applied Biochemistry and Biotechnology, 2012, 166, 2127-2137.	2.9	141
6	Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiology Letters, 2003, 223, 301-307.	1.8	100
7	Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Natural Product Reports, 2020, 37, 80-99.	10.3	92
8	Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Applied Microbiology and Biotechnology, 2012, 95, 1359-1368.	3.6	88
9	Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System. Applied and Environmental Microbiology, 2005, 71, 276-281.	3.1	85
10	Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. Journal of Biotechnology, 2007, 127, 222-228.	3.8	74
11	Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2956-2961.	1.7	74
12	Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052. Letters in Applied Microbiology, 2012, 55, 240-246.	2.2	72
13	Re -Citrate Synthase from Clostridium kluyveri Is Phylogenetically Related to Homocitrate Synthase and Isopropylmalate Synthase Rather Than to Si -Citrate Synthase. Journal of Bacteriology, 2007, 189, 4299-4304.	2.2	63
14	Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnology for Biofuels, 2016, 9, 81.	6.2	62
15	Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site. Applied Microbiology and Biotechnology, 2011, 90, 1163-1169.	3.6	59
16	Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products. Applied Microbiology and Biotechnology, 2020, 104, 455-473.	3.6	56
17	Mychonastes aferHSO-3-1 as a potential new source of biodiesel. Biotechnology for Biofuels, 2011, 4, 47.	6.2	53
18	RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically. Molecular BioSystems, 2013, 9, 2775.	2.9	53

#	Article	IF	CITATIONS
19	Distinct Roles for Carbohydrate-Binding Modules of Glycoside Hydrolase 10 (GH10) and GH11 Xylanases from Caldicellulosiruptor sp. Strain F32 in Thermostability and Catalytic Efficiency. Applied and Environmental Microbiology, 2015, 81, 2006-2014.	3.1	52
20	A Rapid Method for the Determination of Fucoxanthin in Diatom. Marine Drugs, 2018, 16, 33.	4.6	52
21	Enhanced Lipid Productivity and Photosynthesis Efficiency in a Desmodesmus sp. Mutant Induced by Heavy Carbon Ions. PLoS ONE, 2013, 8, e60700.	2.5	43
22	Defluviitalea phaphyphila sp. nov., a Novel Thermophilic Bacterium That Degrades Brown Algae. Applied and Environmental Microbiology, 2016, 82, 868-877.	3.1	43
23	Biosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms. Applied Microbiology and Biotechnology, 2018, 102, 3027-3035.	3.6	41
24	Processive Degradation of Crystalline Cellulose by a Multimodular Endoglucanase via a Wirewalking Mode. Biomacromolecules, 2018, 19, 1686-1696.	5.4	40
25	Characterization of 3-ketoacyl-coA synthase in a nervonic acid producing oleaginous microalgae Mychonastes afer. Algal Research, 2018, 31, 225-231.	4.6	39
26	Prospects of China's biogas: Fundamentals, challenges and considerations. Energy Reports, 2020, 6, 2973-2987.	5.1	39
27	Degradation of carbazole and its derivatives by a Pseudomonas sp Applied Microbiology and Biotechnology, 2006, 73, 941-948.	3.6	38
28	The molecular basis of endolytic activity of a multidomain alginate lyase from Defluviitalea phaphyphila, a representative of a new lyase family, PL39. Journal of Biological Chemistry, 2019, 294, 18077-18091.	3.4	37
29	Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions. Bioresource Technology, 2015, 177, 302-307.	9.6	35
30	Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression. Fungal Genetics and Biology, 2016, 94, 32-46.	2.1	35
31	Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing. Biotechnology for Biofuels, 2016, 9, 96.	6.2	35
32	Cell permeability and nuclear DNA staining by propidium iodide in basidiomycetous yeasts. Applied Microbiology and Biotechnology, 2018, 102, 4183-4191.	3.6	35
33	Energy Conservation and Carbon Flux Distribution During Fermentation of CO or H2/CO2 by Clostridium ljungdahlii. Frontiers in Microbiology, 2020, 11, 416.	3.5	35
34	Evaluation of Clostridium ljungdahlii DSM 13528 reference genes in gene expression studies by qRT-PCR. Journal of Bioscience and Bioengineering, 2013, 116, 460-464.	2.2	34
35	Comparative transcriptome analysis between csrA-disruption Clostridium acetobutylicum and its parent strain. Molecular BioSystems, 2015, 11, 1434-1442.	2.9	34
36	A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydrate Polymers, 2016, 151, 1220-1226.	10.2	34

#	Article	IF	CITATIONS
37	Common problems associated with the microbial productions of aromatic compounds and corresponding metabolic engineering strategies. Biotechnology Advances, 2020, 41, 107548.	11.7	34
38	Selective Biodegradation of S and N Heterocycles by a Recombinant Rhodococcus erythropolis Strain Containing Carbazole Dioxygenase. Applied and Environmental Microbiology, 2006, 72, 2235-2238.	3.1	33
39	Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2013, 79, 403-406.	3.1	33
40	An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis. Enzyme and Microbial Technology, 2013, 53, 194-199.	3.2	31
41	Determination of the modes of action and synergies of xylanases by analysis of xylooligosaccharide profiles over time using fluorescenceâ€assisted carbohydrate electrophoresis. Electrophoresis, 2016, 37, 1640-1650.	2.4	31
42	Biochemical Characterization and Substrate Degradation Mode of a Novel Exotype $\hat{1}^2$ -Agarase from <i>Agarivorans gilvus</i> WH0801. Journal of Agricultural and Food Chemistry, 2017, 65, 7982-7988.	5.2	28
43	Synergistic Cellulose Hydrolysis Dominated by a Multi-Modular Processive Endoglucanase from Clostridium cellulosi. Frontiers in Microbiology, 2016, 7, 932.	3.5	27
44	Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1T. Applied Microbiology and Biotechnology, 2012, 96, 1517-1526.	3.6	26
45	Novel organic solvent-responsive expression vectors for biocatalysis: Application for development of an organic solvent-tolerant biodesulfurizing strain. Bioresource Technology, 2011, 102, 9380-9387.	9.6	25
46	Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide. Applied and Environmental Microbiology, 2020, 86, .	3.1	24
47	Synergism of Glycoside Hydrolase Secretomes from Two Thermophilic Bacteria Cocultivated on Lignocellulose. Applied and Environmental Microbiology, 2014, 80, 2592-2601.	3.1	23
48	Improved ethanol fermentation by heterologous endoinulinase and inherent invertase from inulin by Saccharomyces cerevisiae. Bioresource Technology, 2013, 139, 402-405.	9.6	22
49	Simultaneous Biodetoxification of S, N, and O Pollutants by Engineering of a Carbazole-Degrading Gene Cassette in a Recombinant Biocatalyst. Applied and Environmental Microbiology, 2006, 72, 7373-7376.	3.1	21
50	Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngasâ€utilizing bacterium <i>Clostridium ljungdahlii</i> DSM 13528. Journal of Basic Microbiology, 2014, 54, 996-1004.	3.3	19
51	Candida laoshanensis sp. nov. and Candida qingdaonensis sp. nov., anamorphic, ascomycetous yeast species isolated from decayed wood. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1697-1701.	1.7	17
52	An untapped bacterial cellulolytic community enriched from coastal marine sediment under anaerobic and thermophilic conditions. FEMS Microbiology Letters, 2012, 335, 39-46.	1.8	17
53	Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528. Enzyme and Microbial Technology, 2015, 79-80, 1-7.	3.2	17
54	Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features. Molecular BioSystems, 2015, 11, 3164-3173.	2.9	17

#	Article	IF	Citations
55	Structural insights into the substrate specificity of a glycoside hydrolase family 5 lichenase from <i>Caldicellulosiruptor</i> sp. F32. Biochemical Journal, 2017, 474, 3373-3389.	3.7	17
56	Community Composition and Co-Occurrence Patterns of Diazotrophs along a Soil Profile in Paddy Fields of Three Soil Types in China. Microbial Ecology, 2021, 82, 961-970.	2.8	17
57	Characterization of a novel dextran produced by Gluconobacter oxydans DSM 2003. Applied Microbiology and Biotechnology, 2011, 91, 287-294.	3.6	16
58	Bioremediation of wastewater from edible oil refinery factory using oleaginous microalga <i>Desmodesmus</i> Sp. S1. International Journal of Phytoremediation, 2016, 18, 1195-1201.	3.1	16
59	Two Distinct \hat{l}_{\pm} - <scp> < scp> -Arabinofuranosidases in Caldicellulosiruptor Species Drive Degradation of Arabinose-Based Polysaccharides. Applied and Environmental Microbiology, 2017, 83, .</scp>	3.1	16
60	Ammonium, nitrate, and urea play different roles for lipid accumulation in the nervonic acidâ€"producing microalgae Mychonastes afer HSO-3-1. Journal of Applied Phycology, 2018, 30, 793-801.	2.8	16
61	Recent Developments in Biodesulfurization of Fossil Fuels. , 2009, 113, 255-274.		15
62	Biodesulfurization of Dibenzothiophene by a Newly Isolated Bacterium Mycobacterium sp. X7B. Journal of Chemical Engineering of Japan, 2003, 36, 1174-1177.	0.6	15
63	Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores. Frontiers in Microbiology, 2015, 6, 950.	3.5	14
64	Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052. Applied and Environmental Microbiology, 2017, 83, .	3.1	14
65	Selectable marker recycling in the nonconventional yeast Xanthophyllomyces dendrorhous by transient expression of Cre on a genetically unstable vector. Applied Microbiology and Biotechnology, 2019, 103, 963-971.	3.6	14
66	Photoprotection capacity of microalgae improved by regulating the antenna size of light-harvesting complexes. Journal of Applied Phycology, 2020, 32, 1027-1039.	2.8	14
67	Brassicibacter thermophilus sp. nov., a thermophilic bacterium isolated from coastal sediment. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2870-2874.	1.7	13
68	Characterization of a thermostable endo-1,3(4)- \hat{l}^2 -glucanase from Caldicellulosiruptor sp. strain F32 and its application for yeast lysis. Applied Microbiology and Biotechnology, 2016, 100, 4923-4934.	3.6	13
69	Complete genome sequence of Mycobacterium goodii X7B, a facultative thermophilic biodesulfurizing bacterium with industrial potential. Journal of Biotechnology, 2015, 212, 56-57.	3.8	12
70	Lipid accumulation and anti-rotifer robustness of microalgal strains isolated from Eastern China. Journal of Applied Phycology, 2017, 29, 2789-2800.	2.8	12
71	Substitution of one calciumâ€binding amino acid strengthens substrate binding in a thermophilic alginate lyase. FEBS Letters, 2018, 592, 369-379.	2.8	12
72	Naphthylacetic Acid and Tea Polyphenol Application Promote Biomass and Lipid Production of Nervonic Acid-Producing Microalgae. Frontiers in Plant Science, 2018, 9, 506.	3.6	12

#	Article	IF	CITATIONS
73	Rapid Sorting of Fucoxanthin-Producing Phaeodactylum tricornutum Mutants by Flow Cytometry. Marine Drugs, 2021, 19, 228.	4.6	12
74	A Novel Dextran Dextrinase from Gluconobacter oxydans DSM-2003: Purification and Properties. Applied Biochemistry and Biotechnology, 2012, 168, 1256-1264.	2.9	9
75	Combinations of alkaline hydrogen peroxide and lithium chloride/N,N-dimethylacetamide pretreatments of corn stalk for improved biomethanation. Environmental Research, 2020, 186, 109563.	7.5	9
76	Structural basis for the exolytic activity of polysaccharide lyase family 6 alginate lyase BcAlyPL6 from human gut microbe Bacteroides clarus. Biochemical and Biophysical Research Communications, 2021, 547, 111-117.	2.1	9
77	Microbial desulfurization of fuel oil. Science Bulletin, 2002, 47, 365.	1.7	7
78	Purification and characterization of a flavin reductase from the biodesulfurizing bacterium Mycobacterium goodii X7B. Process Biochemistry, 2012, 47, 1144-1149.	3.7	7
79	Expression of exoinulinase genes in Saccharomyces cerevisiae to improve ethanol production from inulin sources. Biotechnology Letters, 2013, 35, 1589-1592.	2.2	7
80	Lipid Production by a CO2-Tolerant Green Microalga, Chlorella sp. MRA-1. Journal of Microbiology and Biotechnology, 2014, 24, 683-689.	2.1	7
81	Exploration of Two Pectate Lyases from Caldicellulosiruptor bescii Reveals that the CBM66 Module Has a Crucial Role in Pectic Biomass Degradation. Applied and Environmental Microbiology, 2020, 86, .	3.1	7
82	Preparation of microbial desulfurization catalysts. Science Bulletin, 2002, 47, 1077.	1.7	6
83	A two-stage anaerobic bioconversion of corn stover: Impact of pure bacterial pretreatment on methane production. Environmental Technology and Innovation, 2020, 20, 101141.	6.1	6
84	A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii. Microbiology Spectrum, 2021, 9, e0095821.	3.0	6
85	Organisms for Biofuel Production: Natural Bioresources and Methodologies for Improving Their Biosynthetic Potentials. Advances in Biochemical Engineering/Biotechnology, 2013, 147, 185-224.	1.1	5
86	Photosynthetic Effect in Selenastrum capricornutum Progeny after Carbon-Ion Irradiation. PLoS ONE, 2016, 11, e0149381.	2.5	5
87	Biochemical Degradation of Chitosan over Immobilized Cellulase and Supported Fenton Catalysts. Catalysts, 2020, 10, 604.	3.5	5
88	Expression of the Vitreoscilla hemoglobin gene in Nannochloropsis oceanica regulates intracellular oxygen balance under high-light. Journal of Photochemistry and Photobiology B: Biology, 2021, 221, 112237.	3.8	4
89	<scp>GATA</scp> transcription factor <scp>WC2</scp> regulates the biosynthesis of astaxanthin in yeast <i>Xanthophyllomyces dendrorhous</i> Microbial Biotechnology, 2022, 15, 2578-2593.	4.2	3
90	Biofuel and chemical production from carbon one industry flux gas by acetogenic bacteria. Advances in Applied Microbiology, 2021, 117, 1-34.	2.4	2

Fu-Li Li

#	Article	IF	CITATIONS
91	Comprehensive Analysis of CRISPR-Cas9 Editing Outcomes in Yeast <i>Xanthophyllomyces dendrorhous</i> . CRISPR Journal, 2022, 5, 558-570.	2.9	2
92	Editorial: Bioconversion and Biorefinery of C1 Compounds. Frontiers in Microbiology, 2021, 12, 778962.	3.5	1
93	Thermophilic Cellulolytic Enzymes: From Discovery to Design. , 2018, , 167-185.		0