
Graham Woan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7363034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
2	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
4	Robust machine learning algorithm to search for continuous gravitational waves. Physical Review D, 2020, 102, .	1.6	17
5	Generalized application of the Viterbi algorithm to searches for continuous gravitational-wave signals. Physical Review D, 2019, 100, .	1.6	18
6	First search for long-duration transient gravitational waves after glitches in the Vela and Crab pulsars. Physical Review D, 2019, 100, .	1.6	22
7	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
8	Evidence for a Minimum Ellipticity in Millisecond Pulsars. Astrophysical Journal Letters, 2018, 863, L40.	3.0	63
9	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
10	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
11	A targeted spectral interpolation algorithm for the detection of continuous gravitational waves. Classical and Quantum Gravity, 2017, 34, 015010.	1.5	3
12	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
13	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
14	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
15	First results and future prospects for dual-harmonic searches for gravitational waves from spinning neutron stars. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4400-4421.	1.6	14
16	C7 multi-messenger astronomy of GW sources. General Relativity and Gravitation, 2014, 46, 1.	0.7	0
17	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
18	A new code for parameter estimation in searches for gravitational waves from known pulsars. Journal of Physics: Conference Series, 2012, 363, 012041.	0.3	9

GRAHAM WOAN

#	Article	IF	CITATIONS
19	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355
20	Farside explorer: unique science from a mission to the farside of the moon. Experimental Astronomy, 2012, 33, 529-585.	1.6	52
21	A Fundamental Figure of Merit for Radio Polarimeters. IEEE Transactions on Antennas and Propagation, 2011, 59, 2058-2065.	3.1	58
22	Current status of gravitational wave observations. General Relativity and Gravitation, 2011, 43, 387-407.	0.7	8
23	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	1.5	644
24	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	1.5	287
25	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	1.5	1,211
26	Prospects for joint radio telescope and gravitational-wave searches for astrophysical transients. Classical and Quantum Gravity, 2010, 27, 084018.	1.5	9
27	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
28	A generalized measurement equation and van Cittert-Zernike theorem for wide-field radio astronomical interferometry. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1558-1568.	1.6	36
29	Searching for gravitational waves from Cassiopeia A with LIGO. Classical and Quantum Gravity, 2008, 25, 235011.	1.5	75
30	Robust Bayesian detection of unmodelled bursts. Classical and Quantum Gravity, 2008, 25, 114038.	1.5	25
31	Report on the second Mock LISA data challenge. Classical and Quantum Gravity, 2008, 25, 114037.	1.5	44
32	ls there potential complementarity between LISA and pulsar timing?. Journal of Physics: Conference Series, 2008, 122, 012004.	0.3	5
33	An evidence based time-frequency search method for gravitational waves from pulsar glitches. Journal of Physics: Conference Series, 2008, 122, 012035.	0.3	0
34	A fast search strategy for gravitational waves from low-mass x-ray binaries. Classical and Quantum Gravity, 2007, 24, S469-S480.	1.5	25
35	Inference on inspiral signals using LISA MLDC data. Classical and Quantum Gravity, 2007, 24, S521-S527.	1.5	13
36	Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets. Classical and Quantum Gravity, 2007, 24, S541-S549.	1.5	15

GRAHAM WOAN

#	Article	IF	CITATIONS
37	Report on the first round of the Mock LISA Data Challenges. Classical and Quantum Gravity, 2007, 24, S529-S539.	1.5	33
38	Binary system delays and timing noise in searches for gravitationalwaves from known pulsars. Physical Review D, 2007, 76, .	1.6	4
39	Evidence-based search method for gravitational waves from neutron star ring-downs. Physical Review D, 2007, 76, .	1.6	39
40	Gravitational astrophysics. Astronomy and Geophysics, 2007, 48, 1.10-1.17.	0.1	3
41	Principal component analysis for LISA: The time delay interferometry connection. Physical Review D, 2006, 73, .	1.6	15
42	The GEO-HF project. Classical and Quantum Gravity, 2006, 23, S207-S214.	1.5	133
43	Status of the GEO600 detector. Classical and Quantum Gravity, 2006, 23, S71-S78.	1.5	123
44	LISA source confusion: identification and characterization of signals. Classical and Quantum Gravity, 2005, 22, S901-S911.	1.5	18
45	A time-domain MCMC search and upper limit technique for gravitational waves of uncertain frequency from a targeted neutron star. Classical and Quantum Gravity, 2005, 22, S995-S1001.	1.5	5
46	The status of GEO 600. Classical and Quantum Gravity, 2005, 22, S193-S198.	1.5	27
47	Optimal time-domain combination of the two calibrated output quadratures of GEO 600. Classical and Quantum Gravity, 2005, 22, 4253-4261.	1.5	20
48	Bayesian modeling of source confusion in LISA data. Physical Review D, 2005, 72, .	1.6	51
49	Bayesian estimation of pulsar parameters from gravitational wave data. Physical Review D, 2005, 72, .	1.6	79
50	Estimating the parameters of gravitational waves from neutron stars using an adaptive MCMC method. Classical and Quantum Gravity, 2004, 21, S1655-S1665.	1.5	22
51	Status of GEO 600. Classical and Quantum Gravity, 2004, 21, S417-S423.	1.5	85
52	Searching for gravitational waves from the Crab pulsar—the problem of timing noise. Classical and Quantum Gravity, 2004, 21, S843-S846.	1.5	7
53	Hardware injection of simulated continuous gravitational wave signals for GEO 600. Classical and Quantum Gravity, 2004, 21, S861-S865.	1.5	1
54	Calibration of the dual-recycled GEO 600 detector for the S3 science run. Classical and Quantum Gravity, 2004, 21, S1711-S1722.	1.5	15

GRAHAM WOAN

#	Article	IF	CITATIONS
55	Upper limits on the strength of periodic gravitational waves from PSR J1939+2134. Classical and Quantum Gravity, 2004, 21, S671-S676.	1.5	4
56	Commissioning, characterization and operation of the dual-recycled GEO 600. Classical and Quantum Gravity, 2004, 21, S1737-S1745.	1.5	15
57	Detecting Gravitational Radiation from Neutron Stars using a Six-Parameter Adaptive MCMC Method. AIP Conference Proceedings, 2004, , .	0.3	5
58	Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data. Physical Review D, 2004, 70, .	1.6	26
59	The status of GEO 600. , 2004, , .		2
60	Gravitoastronomy with neutron stars. , 2004, , .		0
61	A report on the status of the GEO 600 gravitational wave detector. Classical and Quantum Gravity, 2003, 20, S581-S591.	1.5	14
62	Detector characterization in GEO 600. Classical and Quantum Gravity, 2003, 20, S731-S739.	1.5	0
63	PQMon: a powerful veto for burst events. Classical and Quantum Gravity, 2003, 20, S895-S902.	1.5	17
64	Status of the GEO600 gravitational wave detector. , 2003, , .		2
65	The GEO 600 gravitational wave detector. Classical and Quantum Gravity, 2002, 19, 1377-1387.	1.5	284
66	Data acquisition and detector characterization of GEO600. Classical and Quantum Gravity, 2002, 19, 1399-1407.	1.5	15
67	Capabilities and limitations of long wavelength observations from space. Geophysical Monograph Series, 2000, , 267-276.	0.1	7
68	The astronomical low frequency array: A proposed explorer mission for radio astronomy. Geophysical Monograph Series, 2000, , 339-349.	0.1	8
69	The Second Cambridge Pulsar Survey At 81.5 MHz. Astrophysical Journal, 1998, 509, 785-792.	1.6	9
70	IPS observations of heliospheric density structures associated with active regions. Advances in Space Research, 1996, 17, 311-314.	1.2	1
71	Observations of long-lived solar wind streams during 1990-1993. Annales Geophysicae, 1995, 13, 227-236.	0.6	0
72	Synoptic IPS and Yohkoh soft X-ray observations. Geophysical Research Letters, 1995, 22, 643-646.	1.5	28

#	Article	IF	CITATIONS
73	Observations of long-lived solar wind streams during 1990–1993. Annales Geophysicae, 1995, 13, 227.	0.6	2
74	Robust estimation of interplanetary scintillation. Monthly Notices of the Royal Astronomical Society, 1992, 254, 273-276.	1.6	5
75	The CURSOR Radio Navigation and Tracking System. Journal of Navigation, 1992, 45, 157-165.	1.0	2