
Brandon J Henderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7363027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphine Exposure Reduces Nicotine-Induced Upregulation of Nicotinic Receptors and Decreases Volitional Nicotine Intake in a Mouse Model. Nicotine and Tobacco Research, 2022, 24, 1161-1168.	1.4	9
2	Flavors Enhance Nicotine Vapor Self-administration in Male Mice. Nicotine and Tobacco Research, 2021, 23, 566-572.	1.4	54
3	Systematic Review of Nicotine Exposure's Effects on Neural Stem and Progenitor Cells. Brain Sciences, 2021, 11, 172.	1.1	9
4	Astrocyte-Derived Thrombospondin Induces Cortical Synaptogenesis in a Sex-Specific Manner. ENeuro, 2021, 8, ENEURO.0014-21.2021.	0.9	11
5	Nicotine formulations impact reinforcement-related behaviors in a mouse model of vapor self-administration. Drug and Alcohol Dependence, 2021, 224, 108732.	1.6	27
6	Novel Putative Positive Modulators of α4β2 nAChRs Potentiate Nicotine Reward-Related Behavior. Molecules, 2021, 26, 4793.	1.7	1
7	Protein profiling in the habenula after chronic (–)â€menthol exposure in mice. Journal of Neurochemistry, 2021, 158, 1345-1358.	2.1	2
8	Role of adipocyte Na,K-ATPase oxidant amplification loop in cognitive decline and neurodegeneration. IScience, 2021, 24, 103262.	1.9	3
9	Brain Region-Specific nAChR and Associated Protein Abundance Alterations Following Chronic Nicotine and/or Menthol Exposure. Journal of Proteome Research, 2020, 19, 36-48.	1.8	4
10	The Impact of Electronic Nicotine Delivery System (ENDS) Flavors on Nicotinic Acetylcholine Receptors and Nicotine Addiction-Related Behaviors. Molecules, 2020, 25, 4223.	1.7	16
11	Green Apple e-Cigarette Flavorant Farnesene Triggers Reward-Related Behavior by Promoting High-Sensitivity nAChRs in the Ventral Tegmental Area. ENeuro, 2020, 7, ENEURO.0172-20.2020.	0.9	19
12	Upregulation of nAChRs and Changes in Excitability on VTA Dopamine and GABA Neurons Correlates to Changes in Nicotine-Reward-Related Behavior. ENeuro, 2020, 7, ENEURO.0189-20.2020.	0.9	14
13	Why flavored vape products may be attractive: Green apple tobacco flavor elicits reward-related behavior, upregulates nAChRs on VTA dopamine neurons, and alters midbrain dopamine and GABA neuron function. Neuropharmacology, 2019, 158, 107729.	2.0	39
14	Brain Region Specific Single-Molecule Fluorescence Imaging. Analytical Chemistry, 2019, 91, 10125-10131.	3.2	14
15	Chronic Menthol Does Not Change Stoichiometry or Functional Plasma Membrane Levels of Mouse <i>α</i> 3 <i>β</i> 4-Containing Nicotinic Acetylcholine Receptors. Molecular Pharmacology, 2019, 95, 398-407.	1.0	2
16	Linking Nicotine, Menthol, and Brain Changes. , 2019, , 87-95.		1
17	Menthol Stereoisomers Exhibit Different Effects on α4β2 nAChR Upregulation and Dopamine Neuron Spontaneous Firing. ENeuro, 2018, 5, ENEURO.0465-18.2018.	0.9	18
18	Utilizing pHluorin-tagged Receptors to Monitor Subcellular Localization and Trafficking. Journal of Visualized Experiments, 2017, , .	0.2	1

#	Article	IF	CITATIONS
19	Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability. Neuropsychopharmacology, 2017, 42, 2285-2291.	2.8	84
20	TC299423, a Novel Agonist for Nicotinic Acetylcholine Receptors. Frontiers in Pharmacology, 2017, 8, 641.	1.6	7
21	Mutation Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Reduces Low-Sensitivity α4β2, and Increases α5α4β2, Nicotinic Receptor Surface Expression. PLoS ONE, 2016, 11, e0158032.	1.1	12
22	Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward. Journal of Neuroscience, 2016, 36, 2957-2974.	1.7	64
23	Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons. Journal of Neuroscience, 2016, 36, 65-79.	1.7	44
24	Nicotinic Receptor Subtype-Selective Circuit Patterns in the Subthalamic Nucleus. Journal of Neuroscience, 2015, 35, 3734-3746.	1.7	35
25	Inside-out neuropharmacology of nicotinic drugs. Neuropharmacology, 2015, 96, 178-193.	2.0	78
26	Lynx1 Shifts α4β2 Nicotinic Receptor Subunit Stoichiometry by Affecting Assembly in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2014, 289, 31423-31432.	1.6	61
27	Pharmacological chaperoning of nAChRs: A therapeutic target for Parkinson's disease. Pharmacological Research, 2014, 83, 20-29.	3.1	52
28	Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors. Journal of General Physiology, 2014, 143, 51-66.	0.9	61
29	Discovery of benzamide analogs as negative allosteric modulators of human neuronal nicotinic receptors: Pharmacophore modeling and structure–activity relationship studies. Bioorganic and Medicinal Chemistry, 2013, 21, 4730-4743.	1.4	8
30	Defining the Putative Inhibitory Site for a Selective Negative Allosteric Modulator of Human α4β2 Neuronal Nicotinic Receptors. ACS Chemical Neuroscience, 2012, 3, 682-692.	1.7	12
31	3D-QSAR and 3D-QSSR models of negative allosteric modulators facilitate the design of a novel selective antagonist of human α4β2 neuronal nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1797-1813.	1.0	6
32	Discovery of Novel α4β2 Neuronal Nicotinic Receptor Modulators through Structure-Based Virtual Screening. ACS Medicinal Chemistry Letters, 2011, 2, 855-860.	1.3	10
33	Structure–Activity Relationship Studies of Sulfonylpiperazine Analogues as Novel Negative Allosteric Modulators of Human Neuronal Nicotinic Receptors. Journal of Medicinal Chemistry, 2011, 54, 8681-8692.	2.9	24
34	Identification of a Negative Allosteric Site on Human α4β2 and α3β4 Neuronal Nicotinic Acetylcholine Receptors. PLoS ONE, 2011, 6, e24949.	1.1	17
35	Negative Allosteric Modulators That Target Human α4β2 Neuronal Nicotinic Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 761-774.	1.3	29
36	Effect of Novel Negative Allosteric Modulators of Neuronal Nicotinic Receptors on Cells Expressing Native and Recombinant Nicotinic Receptors: Implications for Drug Discovery. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 504-515.	1.3	19