Christopher Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7362877/publications.pdf

Version: 2024-02-01

687335 642715 31 871 13 23 citations h-index g-index papers 36 36 36 916 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigating the effect of transcutol on the physical properties of an O/W cream. Journal of Dispersion Science and Technology, 2020, 41, 600-606.	2.4	8
2	The dance of the nanobubbles: detecting acoustic backscatter from sub-micron bubbles using ultra-high frequency acoustic microscopy. Nanoscale, 2020, 12, 21420-21428.	5.6	8
3	Improving Treatment Efficacy of In Situ Forming Implants via Concurrent Delivery of Chemotherapeutic and Chemosensitizer. Scientific Reports, 2020, 10, 6587.	3.3	6
4	Contrast-enhanced ultrasound with sub-micron sized contrast agents detects insulitis in mouse models of type1 diabetes. Nature Communications, 2020, 11, 2238.	12.8	37
5	Contrast enhanced ultrasound imaging by nature-inspired ultrastable echogenic nanobubbles. Nanoscale, 2019, 11, 15647-15658.	5.6	86
6	Enhancing Tumor Drug Distribution With Ultrasound-Triggered Nanobubbles. Journal of Pharmaceutical Sciences, 2019, 108, 3091-3098.	3.3	52
7	Sink or float? Characterization of shell-stabilized bulk nanobubbles using a resonant mass measurement technique. Nanoscale, 2019, 11, 851-855.	5.6	62
8	Tunable Polymer Embolic Implant for Vascular Occlusion. ACS Biomaterials Science and Engineering, 2019, 5, 1849-1856.	5.2	0
9	Role of Surface Tension in Gas Nanobubble Stability Under Ultrasound. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9949-9956.	8.0	52
10	Ultrasound-Enhanced Distribution and Treatment Efficacy of Dox-Loaded Intratumoral In Situ Forming Implants in Murine HCT-15 Tumors. , 2018, , .		2
11	Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control. Scientific Reports, 2018, 8, 7986.	3.3	71
12	Predicting in vivo behavior of injectable, in situ-forming drug-delivery systems. Therapeutic Delivery, 2017, 8, 479-483.	2.2	6
13	Cryo-EM Visualization of Lipid and Polymer-Stabilized Perfluorocarbon Gas Nanobubbles - A Step Towards Nanobubble Mediated Drug Delivery. Scientific Reports, 2017, 7, 13517.	3.3	52
14	Increasing Distribution of Drugs Released from In Situ Forming PLGA Implants Using Therapeutic Ultrasound. Annals of Biomedical Engineering, 2017, 45, 2879-2887.	2.5	11
15	Ultrasound molecular imaging of ovarian cancer with CA-125 targeted nanobubble contrast agents. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2159-2168.	3.3	102
16	Improving performance of nanoscale ultrasound contrast agents using N,N-diethylacrylamide stabilization. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 59-67.	3.3	79
17	Ultrasound signal from sub-micron lipid-coated bubbles. , 2017, , .		1
18	Effect of the surfactant pluronic on the stability of lipid-stabilized perfluorocarbon nanobubbles. , 2017, , .		2

#	Article	IF	CITATIONS
19	Enhancing fluorescein distribution from in situ forming PLGA implants using therapeutic ultrasound. , $2017, \ldots$		1
20	Using ultrasound and photoacoustics to monitor in situ forming implant structure and drug release. , $2017, \dots$		1
21	Ultrasound signal from sub-micron lipid-coated bubbles. , 2017, , .		4
22	Theoretical and experimental investigation of the nonlinear dynamics of nanobubbles excited at clinically relevant ultrasound frequencies and pressures: The role oflipid shell buckling., 2017,,.		1
23	Notice of Removal: On the fate of mesh-stabilized lipid nanobubbles after destruction with ultrasound. , 2017, , .		3
24	Ultrasound characterization of slow precipitating implants for vascular occlusion. , 2017, , .		0
25	Ultrasound-guided intratumoral delivery of doxorubicin from <i>in situ</i> forming implants in a hepatocellular carcinoma model. Therapeutic Delivery, 2016, 7, 201-212.	2.2	13
26	Nondestructive Characterization of Biodegradable Polymer Erosion in Vivo Using Ultrasound Elastography Imaging. ACS Biomaterials Science and Engineering, 2016, 2, 1005-1012.	5.2	8
27	Macroporous acrylamide phantoms improve prediction of in vivo performance of in situ forming implants. Journal of Controlled Release, 2016, 243, 225-231.	9.9	27
28	Validation of Ultrasound Elastography Imaging for Nondestructive Characterization of Stiffer Biomaterials. Annals of Biomedical Engineering, 2016, 44, 1515-1523.	2.5	7
29	Ultrasound imaging beyond the vasculature with new generation contrast agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 593-608.	6.1	79
30	Biomedical Imaging in Implantable Drug Delivery Systems. Current Drug Targets, 2015, 16, 672-682.	2.1	33
31	Nanobubble Ultrasound Contrast Agents for Enhanced Delivery of Thermal Sensitizer to Tumors Undergoing Radiofrequency Ablation. Pharmaceutical Research, 2014, 31, 1407-1417.	3.5	52