
V Trevor Forsyth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7362700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanostructure of cellulose microfibrils in spruce wood. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1195-203.	7.1	597
2	Structure of Cellulose Microfibrils in Primary Cell Walls from Collenchyma Â. Plant Physiology, 2012, 161, 465-476.	4.8	268
3	The Mechanical Properties of Hydrated Intermediate Filaments: Insights from Hagfish Slime Threads. Biophysical Journal, 2003, 85, 2015-2027.	0.5	228
4	Neutron Crystallography, Molecular Dynamics, and Quantum Mechanics Studies of the Nature of Hydrogen Bonding in Cellulose I _{1²} . Biomacromolecules, 2008, 9, 3133-3140.	5.4	215
5	The Rheological and Structural Properties of Fmoc-Peptide-Based Hydrogels: The Effect of Aromatic Molecular Architecture on Self-Assembly and Physical Characteristics. Langmuir, 2012, 28, 2015-2022.	3.5	158
6	Metal Ion Roles and the Movement of Hydrogen during Reaction Catalyzed by D-Xylose Isomerase: A Joint X-Ray and Neutron Diffraction Study. Structure, 2010, 18, 688-699.	3.3	139
7	Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles. ACS Nano, 2021, 15, 6709-6722.	14.6	138
8	Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson–Crick base pairing. Nature Nanotechnology, 2015, 10, 353-360.	31.5	136
9	Design of metalâ€binding sites onto selfâ€assembled peptide fibrils. Biopolymers, 2009, 92, 164-172.	2.4	95
10	A molecular mechanism for transthyretin amyloidogenesis. Nature Communications, 2019, 10, 925.	12.8	92
11	Bilayer-Mediated Clustering and Functional Interaction of MscL Channels. Biophysical Journal, 2011, 100, 1252-1260.	0.5	87
12	Negative electronic compressibility and tunable spin splitting in WSe2. Nature Nanotechnology, 2015, 10, 1043-1047.	31.5	85
13	Biomolecular Deuteration for Neutron Structural Biology and Dynamics. Methods in Enzymology, 2016, 566, 113-157.	1.0	83
14	Adsorption of α-Synuclein to Supported Lipid Bilayers: Positioning and Role of Electrostatics. ACS Chemical Neuroscience, 2013, 4, 1339-1351.	3.5	82
15	Nanofibrillar Structure and Molecular Mobility in Spider Dragline Silk. Macromolecules, 2005, 38, 8447-8453.	4.8	73
16	Amyloid Fibril Formation from Sequences of a Natural β-Structured Fibrous Protein, the Adenovirus Fiber. Journal of Biological Chemistry, 2005, 280, 2481-2490.	3.4	63
17	Stealth carriers for low-resolution structure determination of membrane proteins in solution. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 317-328.	2.5	63
18	Identification of the Elusive Hydronium Ion Exchanging Roles with a Proton in an Enzyme at Lower pHâ€Values. Angewandte Chemie - International Edition, 2011, 50, 7520-7523.	13.8	62

#	Article	IF	CITATIONS
19	Water–DNA interactions as studied by X–ray and neutron fibre diffraction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1237-1248.	4.0	61
20	SEC-SANS: size exclusion chromatography combined <i>in situ</i> with small-angle neutron scattering. Journal of Applied Crystallography, 2016, 49, 2015-2020.	4.5	60
21	Conformational States of ABC Transporter MsbA in a Lipid Environment Investigated by Small-Angle Scattering Using Stealth Carrier Nanodiscs. Structure, 2018, 26, 1072-1079.e4.	3.3	58
22	Nearâ€Atomic Resolution Neutron Crystallography on Perdeuterated <i>Pyrococcus furiosus</i> Rubredoxin: Implication of Hydronium Ions and Protonation State Equilibria in Redox Changes. Angewandte Chemie - International Edition, 2013, 52, 1022-1025.	13.8	56
23	Time-resolved X-ray diffraction studies of the B in equilibrium D structural transition in the DNA double helix. Science, 1986, 233, 195-197.	12.6	55
24	Water in Crystalline Fibers of Dihydrate β-Chitin Results in Unexpected Absence of Intramolecular Hydrogen Bonding. PLoS ONE, 2012, 7, e39376.	2.5	55
25	The self-assembling zwitterionic form of <scp>L</scp> -phenylalanine at neutral pH. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 326-331.	0.5	55
26	New sources and instrumentation for neutrons in biology. Chemical Physics, 2008, 345, 133-151.	1.9	53
27	Solution Structure and Characterisation of the Human Pyruvate Dehydrogenase Complex Core Assembly. Journal of Molecular Biology, 2010, 399, 71-93.	4.2	52
28	Inducing phase changes in crystals of macromolecules: Status and perspectives for controlled crystal dehydration. Journal of Structural Biology, 2011, 175, 236-243.	2.8	51
29	Looking at hydrogen bonds in cellulose. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1172-1177.	2.5	48
30	Structure and spacing of cellulose microfibrils in woody cell walls of dicots. Cellulose, 2014, 21, 3887-3895.	4.9	45
31	Mineralized self-assembled peptides on 3D laser-made scaffolds: a new route toward â€~scaffold on scaffold' hard tissue engineering. Biofabrication, 2013, 5, 045002.	7.1	44
32	A High Angle Neutron Fibre Diffraction Study of the Hydration of the A Conformation of the DNA Double Helix. Journal of Biomolecular Structure and Dynamics, 1992, 10, 489-503.	3.5	42
33	Phonon dispersion of oriented DNA by inelastic x-ray scattering. Physical Review E, 2006, 73, 061909.	2.1	39
34	Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose, 2011, 18, 191-206.	4.9	39
35	Direct Determination of the Hydrogen Bonding Arrangement in Anhydrous Î ² -Chitin by Neutron Fiber Diffraction. Biomacromolecules, 2012, 13, 288-291.	5.4	39
36	Matchout deuterium labelling of proteins for small-angle neutron scattering studies using prokaryotic and eukaryotic expression systems and high cell-density cultures. European Biophysics Journal, 2017, 46, 425-432.	2.2	39

#	Article	IF	CITATIONS
37	Self-Assembled Amyloid Peptides with Arg-Gly-Asp (RGD) Motifs As Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 1404-1416.	5.2	38
38	On the Reliability of Câ ''H···O Interactions in Crystal Engineering:  Synthesis and Structure of Two Hydrogen Bonded Phosphonium Bis(aryloxide) Salts. Crystal Growth and Design, 2002, 2, 163-169.	3.0	37
39	A peptide from the adenovirus fiber shaft forms amyloid-type fibrils. FEBS Letters, 2000, 468, 23-27.	2.8	36
40	Localization of Cholesterol within Supported Lipid Bilayers Made of a Natural Extract of Tailor-Deuterated Phosphatidylcholine. Langmuir, 2018, 34, 472-479.	3.5	36
41	Neutron fibre diffraction study of DNA hydration. International Journal of Biological Macromolecules, 1989, 11, 236-240.	7.5	35
42	Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses. BMC Plant Biology, 2015, 15, 153.	3.6	35
43	Towards a molecular understanding of the water purification properties of Moringa seed proteins. Journal of Colloid and Interface Science, 2019, 554, 296-304.	9.4	34
44	The structure of celluloses. Powder Diffraction, 2008, 23, 92-95.	0.2	33
45	New Insights into the Structure of Poly(p-phenylene terephthalamide) from Neutron Fiber Diffraction Studies. Macromolecules, 2004, 37, 9654-9656.	4.8	31
46	Adenovirus Fibre Shaft Sequences Fold into the Native Triple Beta-Spiral Fold when N-terminally Fused to the Bacteriophage T4 Fibritin Foldon Trimerisation Motif. Journal of Molecular Biology, 2004, 342, 219-227.	4.2	31
47	Biosynthetic preparation of selectively deuterated phosphatidylcholine in genetically modified Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 241-254.	3.6	31
48	Structural basis for activation of plasma-membrane Ca2+-ATPase by calmodulin. Communications Biology, 2018, 1, 206.	4.4	30
49	Protein Short-Time Diffusion in a Naturally Crowded Environment. Journal of Physical Chemistry Letters, 2019, 10, 1709-1715.	4.6	30
50	The Pentameric Nucleoplasmin Fold Is Present in Drosophila FKBP39 and a Large Number of Chromatin-Related Proteins. Journal of Molecular Biology, 2015, 427, 1949-1963.	4.2	29
51	Xâ€ray camera for high―and smallâ€angle xâ€ray diffraction studies of the drawing and annealing of polymers at Daresbury Synchrotron Radiation Source. Review of Scientific Instruments, 1992, 63, 1087-1090.	1.3	28
52	Binding site asymmetry in human transthyretin: insights from a joint neutron and X-ray crystallographic analysis using perdeuterated protein. IUCrJ, 2014, 1, 429-438.	2.2	28
53	Solution conformations of early intermediates in Mos1 transposition. Nucleic Acids Research, 2013, 41, 2020-2033.	14.5	27
54	Perdeuteration of cholesterol for neutron scattering applications using recombinant Pichia pastoris. Chemistry and Physics of Lipids, 2018, 212, 80-87.	3.2	27

#	Article	IF	CITATIONS
55	<i>In vivo</i> analysis of the <i>Escherichia coli</i> ultrastructure by small-angle scattering. IUCrJ, 2017, 4, 751-757.	2.2	27
56	Impact of Deuteration on the Assembly Kinetics of Transthyretin Monitored by Native Mass Spectrometry and Implications for Amyloidoses. Angewandte Chemie - International Edition, 2016, 55, 9292-9296.	13.8	25
57	Direct Determination of the Base-Pair Force Constant of DNA from the Acoustic Phonon Dispersion of the Double Helix. Physical Review Letters, 2011, 107, 088102.	7.8	24
58	Adsorption of Denaturated Lysozyme at the Air–Water Interface: Structure and Morphology. Langmuir, 2018, 34, 5020-5029.	3.5	24
59	Neutron Diffraction Study of a Phenol·Nitroxide Radical Adduct: A Structural Model for Hydrogen Atom Abstraction by Peroxyl Radicals from Vitamin E and Related Phenolic Antioxidants. Journal of the American Chemical Society, 2001, 123, 9164-9165.	13.7	23
60	NMR crystallography: The effect of deuteration on high resolution 13C solid state NMR spectra of a 7-TM protein. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 3029-3035.	2.6	23
61	Selective deuteration of tryptophan and methionine residues in maltose binding protein: a model system for neutron scattering. European Biophysics Journal, 2008, 37, 815-822.	2.2	23
62	Self-Assembly of an Aspartate-Rich Sequence from the Adenovirus Fiber Shaft: Insights from Molecular Dynamics Simulations and Experiments. Journal of Physical Chemistry B, 2014, 118, 1765-1774.	2.6	22
63	L-Arabinose Binding, Isomerization, and Epimerization by D-Xylose Isomerase: X-Ray/Neutron Crystallographic and Molecular Simulation Study. Structure, 2014, 22, 1287-1300.	3.3	22
64	The Production of Matchout-Deuterated Cholesterol and the Study of Bilayer-Cholesterol Interactions. Scientific Reports, 2019, 9, 5118.	3.3	22
65	Neutron Vibrational Spectroscopy Gives New Insights into the Structure of Poly(p-phenylene) Tj ETQq1 1 0.7843	14.rgBT /0 13.77	Dverlock 10 T
66	Time-resolved small-angle neutron scattering as a probe for the dynamics of lipid exchange between human lipoproteins and naturally derived membranes. Scientific Reports, 2019, 9, 7591.	3.3	19
67	Metabolic fluxes for nutritional flexibility of <i>Mycobacterium tuberculosis</i> . Molecular Systems Biology, 2021, 17, e10280.	7.2	19
68	Inhibition of <scp>D</scp> -xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1201-1206.	2.5	18
69	Structure and dynamics of a complex of cellulose with EDA: insights into the action of amines on cellulose. Cellulose, 2013, 20, 1563-1571.	4.9	18
70	Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering. Scientific Reports, 2016, 6, 18862.	3.3	18
71	A novel amyloid designable scaffold and potential inhibitor inspired by <scp>GAIIG</scp> of amyloid beta and the <scp>HIV</scp> â€1 V3 loop. FEBS Letters, 2018, 592, 1777-1788.	2.8	18
72	SARS-CoV-2 spike protein removes lipids from model membranes and interferes with the capacity of high density lipoprotein to exchange lipids. Journal of Colloid and Interface Science, 2021, 602, 732-739.	9.4	18

#	Article	IF	CITATIONS
73	New Developments in Instrumentation for X-ray and Neutron Fibre Diffraction Experiments. Journal of Applied Crystallography, 1998, 31, 758-766.	4.5	17
74	X-ray high-angle fibre diffraction studies of nucleic acid structure using the Daresbury Synchrotron Radiation Source. Biochemical Society Transactions, 1986, 14, 553-557.	3.4	16
75	Analysis of XFEL serial diffraction data from individual crystalline fibrils. IUCrJ, 2017, 4, 795-811.	2.2	16
76	Comparison of lipidic carrier systems for integral membrane proteins – MsbA as case study. Biological Chemistry, 2019, 400, 1509-1518.	2.5	15
77	Macromolecular structure phasing by neutron anomalous diffraction. Scientific Reports, 2016, 6, 31487.	3.3	14
78	Computational design of amyloid self-assembling peptides bearing aromatic residues and the cell adhesive motif Arg-Gly-Asp. Molecular Systems Design and Engineering, 2017, 2, 321-335.	3.4	14
79	Nanostructural deformation of high-stiffness spruce wood under tension. Scientific Reports, 2021, 11, 453.	3.3	14
80	Effect of crowding on the conformation of interwound DNA strands from neutron scattering measurements and Monte Carlo simulations. Physical Review E, 2010, 81, 061905.	2.1	13
81	Human CD4 Metastability Is a Function of the Allosteric Disulfide Bond in Domain 2. Biochemistry, 2016, 55, 2227-2237.	2.5	13
82	In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure. Scientific Reports, 2019, 9, 8716.	3.3	13
83	Neutron crystallography reveals mechanisms used by Pseudomonas aeruginosa for host-cell binding. Nature Communications, 2022, 13, 194.	12.8	13
84	A fast new diffractometer for chemical crystallography, small proteins and fiber diffraction. Neutron News, 2001, 12, 20-25.	0.2	12
85	A preliminary neutron crystallographic study of thaumatin. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 378-381.	0.7	12
86	Flowâ€eligned, singleâ€shot fiber diffraction using a femtosecond Xâ€ray freeâ€electron laser. Cytoskeleton, 2017, 74, 472-481.	2.0	12
87	Lipoprotein ability to exchange and remove lipids from model membranes as a function of fatty acid saturation and presence of cholesterol. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158769.	2.4	12
88	Cryoâ€EM structure of MsbA in saposinâ€lipid nanoparticles (Salipro) provides insights into nucleotide coordination. FEBS Journal, 2022, 289, 2959-2970.	4.7	12
89	Combined neutron and X-ray diffraction studies of DNA in crystals and solutions. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1244-1248.	2.5	10
90	DNA and the hydration economy. Nature, 1988, 335, 596-596.	27.8	9

#	Article	IF	CITATIONS
91	Absorption correction based on a three-dimensional model reconstruction from visual images. Journal of Applied Crystallography, 2008, 41, 729-737.	4.5	9
92	Intrinsic disorder within the erythrocyte binding-like proteins from Plasmodium falciparum. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 2306-2314.	2.3	9
93	Structure of the H-NS–DNA nucleoprotein complex. Soft Matter, 2016, 12, 3636-3642.	2.7	9
94	Neutron scattering for structural biology. Physics Today, 2020, 73, 36-42.	0.3	9
95	High-angle neutron fiber diffraction studies of DNA. Neutron News, 1992, 3, 21-24.	0.2	8
96	Collective Dynamics of Intracellular Water in Living Cells. Journal of Physics: Conference Series, 2012, 340, 012091.	0.4	8
97	Interfacial Structure of Immobilized Antibodies and Perdeuterated HSA in Model Pregnancy Tests Measured with Neutron Reflectivity. Langmuir, 2014, 30, 5880-5887.	3.5	8
98	Visualization of hydrogen atoms in a perdeuterated lectin-fucose complex reveals key details of protein-carbohydrate interactions. Structure, 2021, 29, 1003-1013.e4.	3.3	8
99	Back-exchange of deuterium in neutron crystallography: characterization by IR spectroscopy. Journal of Applied Crystallography, 2017, 50, 660-664.	4.5	8
100	A preliminary neutron crystallographic study of an A-DNA crystal. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 232-235.	0.7	7
101	The aggregation of "native―human serum albumin. European Biophysics Journal, 2015, 44, 367-371.	2.2	7
102	Crystals oftrprepressor suitable for high-resolution neutron Laue diffraction studies. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 136-138.	2.5	6
103	Comparative neutron and X-ray study of [PPN][HIr4(CO)9(μ-Ph2PCH2PPh2)]. Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219, 47-53.	0.8	6
104	Neutron fibre diffraction studies of amyloid using H ₂ O/D ₂ O isotopic replacement. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 332-335.	0.7	6
105	Laser processing of protein films as a method for accomplishment of cell patterning at the microscale. Biofabrication, 2017, 9, 045004.	7.1	6
106	Dynamic self-assembly of DNA minor groove-binding ligand DB921 into nanotubes triggered by an alkali halide. Nanoscale, 2018, 10, 5550-5558.	5.6	6
107	Production of perdeuterated fucose from glyco-engineered bacteria. Glycobiology, 2021, 31, 151-158.	2.5	6
108	ApoE and ApoE Nascent-Like HDL Particles at Model Cellular Membranes: Effect of Protein Isoform and Membrane Composition. Frontiers in Chemistry, 2021, 9, 630152.	3.6	6

#	Article	IF	CITATIONS
109	Sweet neutron crystallography. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1139-1143.	2.5	5
110	Using neutron protein crystallography to understand enzyme mechanisms. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1257-1261.	2.5	5
111	Elongation rate and average length of amyloid fibrils in solution using isotope-labelled small-angle neutron scattering. RSC Chemical Biology, 2021, 2, 1232-1238.	4.1	5
112	Nanoscale Structure and Dynamics of Model Membrane Lipid Raft Systems, Studied by Neutron Scattering Methods. Frontiers in Physics, 2022, 10, .	2.1	5
113	Microgravity crystallization of perdeuterated tryptophan synthase for neutron diffraction. Npj Microgravity, 2022, 8, 13.	3.7	5
114	Preliminary neutron crystallographic study of human transthyretin. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1428-1431.	0.7	4
115	Structural insights into protein folding, stability and activity using <i>in vivo</i> perdeuteration of hen egg-white lysozyme. IUCrJ, 2021, 8, 372-386.	2.2	4
116	Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers. Nuclear Instruments & Methods in Physics Research B, 2005, 238, 7-15.	1.4	3
117	Force-induced structural transitions in cross-linked DNA films. European Biophysics Journal, 2008, 37, 749-757.	2.2	3
118	SPINE-compatible `carboloops': a new microshaped vitreous carbon sample mount for X-ray and neutron crystallography. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 681-684.	0.8	3
119	Impact of Deuteration on the Assembly Kinetics of Transthyretin Monitored by Native Mass Spectrometry and Implications for Amyloidoses. Angewandte Chemie, 2016, 128, 9438-9442.	2.0	3
120	A Dimerization Site at SCR-17/18 in Factor H Clarifies a New Mechanism for Complement Regulatory Control. Frontiers in Immunology, 2020, 11, 601895.	4.8	3
121	DNA Hydration Studied by Neutron Fiber Diffraction. , 1996, 64, 345-358.		3
122	The impact of folding modes and deuteration on the atomic resolution structure of hen egg-white lysozyme. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1579-1590.	2.3	3
123	Attenuation corrections for X-ray and neutron fibre diffraction studies. Journal of Applied Crystallography, 1995, 28, 49-52.	4.5	2
124	Structural studies on acridine derivatives binding to telomeric DNA. Physica B: Condensed Matter, 2006, 385-386, 845-847.	2.7	2
125	Crystallization and preliminary X-ray diffraction analysis of human cytosolic seryl-tRNA synthetase. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1521-1524.	0.7	2
126	X-rays and neutrons for the study of DNA structure, hydration, and transitions. Physica B: Condensed Matter, 2006, 385-386, 848-852.	2.7	1

#	Article	IF	CITATIONS
127	Neutron scattering for the study of biological systems – major opportunities within a rapidly changing landscape. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1126-1128.	2.3	1
128	Thermal Neutron Relative Biological Effectiveness Factors for Boron Neutron Capture Therapy from In Vitro Irradiations. Cells, 2020, 9, 2144.	4.1	1
129	Radiobiology data of melanoma cells after low-energy neutron irradiation and boron compound administration. Applied Radiation and Isotopes, 2020, 163, 109205.	1.5	1
130	High-Angle Neutron Fiber Diffraction in the Study of Biological Systems. Biological and Medical Physics Series, 2006, , 85-105.	0.4	1
131	Structure factor calculations for a side-by-side model of B-DNA. International Journal of Biological Macromolecules, 1994, 16, 195-205.	7.5	0
132	Amyloid Character of Self-Assembling Proteins Based on Adenovirus Fiber Shaft Sequences: A Fibrous Biomaterial Revisited. Nanobiotechnology, 2005, 1, 219-226.	1.2	0
133	Neutrons in biology: Institut Laue – Langevin, 4–7 September 2005. European Biophysics Journal, 2006, 35, 549-550.	2.2	0
134	Orientation and analysis of XFEL serial diffraction patterns from fibrous molecular assemblies. , 2017, , ,		0
135	Analysis of Fibrous Assembly Orientations from XFEL Diffraction Data. , 2018, , .		0
136	Hierarchical Nanotube Selfâ€Assembly of DNA Minor Grooveâ€Binding Ligand DB921 via Alkali Halide Triggering. Macromolecular Symposia, 2019, 386, 1800243.	0.7	0
137	Études par diffraction de fibres de l'ADN double brin. European Physical Journal Special Topics, 2005, 130, 63-74.	0.2	0
138	Time-Resolved X-Ray Fibre Diffraction Studies of Structural Transitions in the DNA Double-Helix Using the Daresbury SRS. Springer Series in Biophysics, 1987, , 19-31.	0.4	0
139	Time-of-Flight Laue Fiber Diffraction Studies of Perdeuterated DNA. , 1996, 64, 359-367.		0