Nelson Machado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7362569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agronomy for Sustainable Development, 2018, 38, 1.	2.2	66
2	Discrimination and characterisation of extra virgin olive oils from three cultivars in different maturation stages using Fourier transform infrared spectroscopy in tandem with chemometrics. Food Chemistry, 2015, 174, 226-232.	4.2	59
3	Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health. Molecules, 2017, 22, 1986.	1.7	57
4	Nutrients, Antinutrients, Phenolic Composition, and Antioxidant Activity of Common Bean Cultivars and their Potential for Food Applications. Antioxidants, 2020, 9, 186.	2.2	41
5	Addressing Facts and Gaps in the Phenolics Chemistry of Winery By-Products. Molecules, 2017, 22, 286.	1.7	40
6	Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for the determination of nutritional and antinutritional parameters in common beans. Food Chemistry, 2020, 306, 125509.	4.2	35
7	Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages. Talanta, 2015, 132, 829-835.	2.9	28
8	Characterisation of nutritional quality traits of a chickpea (Cicer arietinum) germplasm collection exploited in chickpea breeding in Europe. Crop and Pasture Science, 2017, 68, 1031.	0.7	28
9	Prediction of Phytochemical Composition, In Vitro Antioxidant Activity and Individual Phenolic Compounds of Common Beans Using MIR and NIR Spectroscopy. Food and Bioprocess Technology, 2020, 13, 962-977.	2.6	23
10	Characterization of Soaking Process' Impact in Common Beans Phenolic Composition: Contribute from the Unexplored Portuguese Germplasm. Foods, 2019, 8, 296.	1.9	21
11	Quantification of Chemical Characteristics of Olive Fruit and Oil of cv Cobrançosa in Two Ripening Stages Using MIR Spectroscopy and Chemometrics. Food Analytical Methods, 2015, 8, 1490-1498.	1.3	18
12	Potential of Legumes: Nutritional Value, Bioactive Properties, Innovative Food Products, and Application of Eco-friendly Tools for Their Assessment. Food Reviews International, 2023, 39, 160-188.	4.3	18
13	Nanohybrid Assemblies of Porphyrin and Au10 Cluster Nanoparticles. Nanomaterials, 2019, 9, 1026.	1.9	16
14	Variation in Pea (Pisum sativum L.) Seed Quality Traits Defined by Physicochemical Functional Properties. Foods, 2019, 8, 570.	1.9	15
15	Evaluating the freezing impact on the proximate composition of immature cowpea (<i>Vigna) Tj ETQq1 1 0.784 Food and Agriculture, 2017, 97, 4295-4305.</i>	314 rgBT , 1.7	Overlock 10 13
16	Effect of Agroâ€Environmental Factors on the Mineral Content of Olive Oils: Categorization of the Three Major Portuguese Cultivars. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 813-822.	0.8	12
17	Kinetics of the Polyphenolic Content and Radical Scavenging Capacity in Olives through On-Tree Ripening. Journal of Chemistry, 2017, 2017, 1-11.	0.9	12
18	Trace Element Content of Monovarietal and Commercial Portuguese Olive Oils. Journal of Oleo Science, 2015, 64, 1083-1093.	0.6	11

NELSON MACHADO

#	Article	IF	CITATIONS
19	Chemometric analysis on free amino acids and proximate compositional data for selecting cowpea (Vigna unguiculata L.) diversity. Journal of Food Composition and Analysis, 2016, 53, 69-76.	1.9	11
20	New grape stems-based liqueur: Physicochemical and phytochemical evaluation. Food Chemistry, 2016, 190, 896-903.	4.2	11
21	Assessment of quality parameters and phytochemical content of thirty â€~Tempranillo' grape clones for varietal improvement in two distinct sub-regions of Douro. Scientia Horticulturae, 2020, 262, 109096.	1.7	10
22	Optimising grapevine summer stress responses and hormonal balance by applying kaolin in two Portuguese Demarcated Regions. Oeno One, 2021, 55, 207-222.	0.7	9
23	Uncovering the effects of kaolin on balancing berry phytohormones and quality attributes of <scp><i>Vitis vinifera</i></scp> grown in warmâ€ŧemperate climate regions. Journal of the Science of Food and Agriculture, 2022, 102, 782-793.	1.7	9
24	Kaolin Application Modulates Grapevine Photochemistry and Defence Responses in Distinct Mediterranean-Type Climate Vineyards. Agronomy, 2021, 11, 477.	1.3	6
25	Spectrophotometric versus <scp>NIRâ€MIR</scp> assessments of cowpea pods for discriminating the impact of freezing. Journal of the Science of Food and Agriculture, 2017, 97, 4285-4294.	1.7	5
26	Elucidating potential utilization of Portuguese common bean varieties in rice based processed foods. Journal of Food Science and Technology, 2018, 55, 1056-1064.	1.4	5
27	Application of Fourier transform infrared spectroscopy (FTIR) techniques in the mid-IR (MIR) and near-IR (NIR) spectroscopy to determine n-alkane and long-chain alcohol contents in plant species and faecal samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 280, 121544.	2.0	5
28	Sorting out the value of spectroscopic tools to assess the <i>Colletotrichum acutatum</i> impact in olive cultivars with different susceptibilities. Journal of Chemometrics, 2016, 30, 548-558.	0.7	4
29	FTIR chemometrical approach for clonal assessment: Selection of <i>Olea europaea</i> L. optimal phenotypes from cv. Cobrançosa. Journal of Chemometrics, 2017, 31, e2860.	0.7	4
30	ATR-MIR spectroscopy as a tool to assist â€~Tempranillo' clonal selection process: Geographical origin and year of harvest discrimination and oenological parameters prediction. Food Chemistry, 2020, 325, 126938.	4.2	4