
Jovan Kamcev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7362327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 2017, 356, .	6.0	1,864
2	Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells. Journal of Physical Chemistry C, 2013, 117, 13396-13402.	1.5	164
3	lon Activity Coefficients in Ion Exchange Polymers: Applicability of Manning's Counterion Condensation Theory. Macromolecules, 2015, 48, 8011-8024.	2.2	154
4	lon-capture electrodialysis using multifunctional adsorptive membranes. Science, 2021, 372, 296-299.	6.0	152
5	Partitioning of mobile ions between ion exchange polymers and aqueous salt solutions: importance of counter-ion condensation. Physical Chemistry Chemical Physics, 2016, 18, 6021-6031.	1.3	148
6	Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes. ACS Applied Materials & Interfaces, 2017, 9, 4044-4056.	4.0	126
7	Ion Diffusion Coefficients in Ion Exchange Membranes: Significance of Counterion Condensation. Macromolecules, 2018, 51, 5519-5529.	2.2	123
8	A Singleâ€ l on Conducting Borate Network Polymer as a Viable Quasiâ€ S olid Electrolyte for Lithium Metal Batteries. Advanced Materials, 2020, 32, e1905771.	11.1	121
9	Salt concentration dependence of ionic conductivity in ion exchange membranes. Journal of Membrane Science, 2018, 547, 123-133.	4.1	119
10	Effect of fixed charge group concentration on equilibrium ion sorption in ion exchange membranes. Journal of Materials Chemistry A, 2017, 5, 4638-4650.	5.2	105
11	Charged Polymer Membranes for Environmental/Energy Applications. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 111-133.	3.3	102
12	Functionalized Porous Aromatic Frameworks as Highâ€Performance Adsorbents for the Rapid Removal of Boric Acid from Water. Advanced Materials, 2019, 31, e1808027.	11.1	96
13	Chemically Enhancing Block Copolymers for Block-Selective Synthesis of Self-Assembled Metal Oxide Nanostructures. ACS Nano, 2013, 7, 339-346.	7.3	90
14	Accounting for frame of reference and thermodynamic non-idealities when calculating salt diffusion coefficients in ion exchange membranes. Journal of Membrane Science, 2017, 537, 396-406.	4.1	46
15	Effect of ambient carbon dioxide on salt permeability and sorption measurements in ion-exchange membranes. Journal of Membrane Science, 2015, 479, 55-66.	4.1	40
16	Nanoscale Transport Enables Active Self-Assembly of Millimeter-Scale Wires. Nano Letters, 2012, 12, 240-245.	4.5	36
17	Influence of concentration polarization and thermodynamic non-ideality on salt transport in reverse osmosis membranes. Journal of Membrane Science, 2019, 572, 668-675.	4.1	36
18	Equilibrium ion partitioning between aqueous salt solutions and inhomogeneous ion exchange membranes. Desalination, 2018, 446, 31-41.	4.0	35

JOVAN ΚΑΜCEV

0

#	Article	IF	CITATIONS
19	Effect of fixed charge group concentration on salt permeability and diffusion coefficients in ion exchange membranes. Journal of Membrane Science, 2018, 566, 307-316.	4.1	34
20	Microtubule nanospool formation by active self-assembly is not initiated by thermal activation. Soft Matter, 2011, 7, 3108-3115.	1.2	33
21	Manning condensation in ion exchange membranes: A review on ion partitioning and diffusion models. Journal of Polymer Science, 2022, 60, 2929-2973.	2.0	32
22	lonic conductivity of ion-exchange membranes: Measurement techniques and salt concentration dependence. Journal of Membrane Science, 2021, 618, 118718.	4.1	28
23	Influence of water content on alkali metal chloride transport in cross-linked Poly(ethylene glycol) Diacrylate.1. Ion sorption. Polymer, 2019, 178, 121554.	1.8	25
24	Influence of water content on alkali metal chloride transport in cross-linked Poly(ethylene glycol) diacrylate.2. Ion diffusion. Polymer, 2020, 192, 122316.	1.8	21
25	Influence of fixed charge concentration and water uptake on ion sorption in AMPS/PEGDA membranes. Journal of Membrane Science, 2022, 644, 120171.	4.1	16
26	Reformulating the <scp>permselectivity onductivity</scp> tradeoff relation in <scp>ion xchange</scp> membranes. Journal of Polymer Science, 2021, 59, 2510-2520.	2.0	15
27	Effect of Water Content on Sodium Chloride Sorption in Cross-Linked Cation Exchange Membranes. Macromolecules, 2019, 52, 2569-2579.	2.2	14
28	Salt and ion transport in a series of crosslinked AMPS/PEGDA hydrogel membranes. Journal of Membrane Science, 2022, 653, 120549.	4.1	9
29	Cracks help membranes to stay hydrated. Nature, 2016, 532, 445-446.	13.7	6

Nanofiltration Membranes. , 2015, , 1342-1349.

3