Yohanna Seminovski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7361607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Separation of an aqueous mixture of 6-kestose/sucrose with zeolites: A molecular dynamics simulation. Microporous and Mesoporous Materials, 2021, 319, 111031.	4.4	3
2	Ab initio insights into the structural, energetic, electronic, and stability properties of mixed CenZr15â^'nO30 nanoclusters. Physical Chemistry Chemical Physics, 2019, 21, 26637-26646.	2.8	3
3	The role of the anionic and cationic pt sites in the adsorption site preference of water and ethanol on defected Pt4/Pt(111) substrates: A density functional theory investigation within the D3 van der waals corrections. Surface Science, 2018, 667, 84-91.	1.9	6
4	Physical and Chemical Properties of Unsupported (MO ₂) _{<i>n</i>} Clusters for M = Ti, Zr, or Ce and <i>n</i> = 1–15: A Density Functional Theory Study Combined with the Tree-Growth Scheme and Euclidean Similarity Distance Algorithm. Journal of Physical Chemistry C, 2018, 122, 27702-27712.	3.1	25
5	<i>Ab initio</i> investigation of the formation of ZrO2-like structures upon the adsorption of Zr <i>n</i> on the CeO2(111) surface. Journal of Chemical Physics, 2018, 149, 244702.	3.0	7
6	The Role of Low-Coordinated Sites on the Adsorption of Glycerol on Defected Pt _{<i>n</i>} /Pt(111) Substrates: A Density Functional Investigation within the D3 van der Waals Correction. Journal of Physical Chemistry C, 2017, 121, 3445-3454.	3.1	14
7	Glycerol adsorption on a defected Pt6/Pt(100) substrate: a density functional theory investigation within the D3 van der Waals correction. RSC Advances, 2017, 7, 17122-17127.	3.6	5
8	The role of the cationic Pt sites in the adsorption properties of water and ethanol on the Pt4/Pt(111) and Pt4/CeO2(111) substrates: A density functional theory investigation. Journal of Chemical Physics, 2016, 145, 124709.	3.0	10
9	The role of charge transfer in the oxidation state change of Ce atoms in the TM ₁₃ –CeO ₂ (111) systems (TM = Pd, Ag, Pt, Au): a DFT + U investigation. Physical Chemistry Chemical Physics, 2015, 17, 13520-13530.	2.8	41
10	Analysis of SnS ₂ hyperdoped with V proposed as efficient absorber material. Journal of Physics Condensed Matter, 2014, 26, 395501.	1.8	5
11	Effect of van der Waals interaction on the properties of SnS2 layered semiconductor. Thin Solid Films, 2013, 535, 387-389.	1.8	33
12	Obtaining an intermediate band photovoltaic material through the Bi insertion in CdTe. Solar Energy Materials and Solar Cells, 2013, 114, 99-103.	6.2	18
13	Band gap control via tuning of inversion degree in CdIn2S4 spinel. Applied Physics Letters, 2012, 100, .	3.3	31
14	Thermodynamics of zinc insertion in CuGaS2:Ti, used as a modulator agent in an intermediate-band photovoltaic material. Computational and Theoretical Chemistry, 2011, 975, 134-137.	2.5	10
15	Intermediate band position modulated by Zn addition in Ti doped CuGaS2. Thin Solid Films, 2011, 519, 7517-7521.	1.8	20
16	V-doped SnS2: a new intermediate band material for a better use of the solar spectrum. Physical Chemistry Chemical Physics, 2011, 13, 20401.	2.8	80