
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7361510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative scanning microwave microscopy of 2D electron and hole gases in AlN/GaN heterostructures. Applied Physics Letters, 2022, 120, 012103.	3.3	2
2	Inverted Scanning Microwave Microscopy of a Vital Mitochondrion in Liquid. IEEE Microwave and Wireless Components Letters, 2022, 32, 804-806.	3.2	3
3	Quantitative Scanning Microwave Microscopy of Few-layer Platinum Diselenide. , 2021, , .		0
4	Heterodyne phase shifting method in scanning probe microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 378.	1.5	1
5	Real-Time Removal of Topographic Artifacts in Scanning Microwave Microscopy. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2662-2672.	4.6	8
6	Attoampere Nanoelectrochemistry. Small, 2021, 17, e2101253.	10.0	14
7	Quantitative Characterization of Platinum Diselenide Electrical Conductivity With an Inverted Scanning Microwave Microscope. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3348-3359.	4.6	6
8	Broadband electrical impedance as a novel characterization of oxidative stress in single L6 skeletal muscle cells. Analytica Chimica Acta, 2021, 1173, 338678.	5.4	5
9	Microwaves and Microscopy [From the Guest Editors' Desk]. IEEE Microwave Magazine, 2020, 21, 19-21.	0.8	0
10	Scanning Microwave Microscopy for Biological Applications: Introducing the State of the Art and Inverted SMM. IEEE Microwave Magazine, 2020, 21, 52-59.	0.8	12
11	Electrical properties of Jurkat cells: an inverted scanning microwave microscope study. , 2020, , .		1
12	Quantitative Phase Imaging of Embedded Scattering Surfaces by Synthetic Optical Holography. , 2020, , .		0
13	Dynamics of Optical Vortices in Speckle Patterns with Sub-Nanometric Spectral Resolution. , 2020, , .		0
14	Blisters on graphite surface: a scanning microwave microscopy investigation. RSC Advances, 2019, 9, 23156-23160.	3.6	5
15	Inverted Scanning Microwave Microscopy for Nanometer-scale Imaging and Characterization of Platinum Diselenide. , 2019, , .		5
16	Broadband Scanning Microwave Microscopy of a Biological Cell with Unprecedented Image Quality and Signal-to-Noise Ratio. , 2019, , .		6
17	Inverted scanning microwave microscope for <i>in vitro</i> imaging and characterization of biological cells. Applied Physics Letters, 2019, 114, .	3.3	20
18	Synthetic optical holography for in-depth imaging of optical vortices in speckle patterns. AIP Advances, 2019, 9, 015211.	1.3	4

#	Article	IF	CITATIONS
19	Quantitative Scanning Microwave Microscopy of the Evolution of a Live Biological Cell in a Physiological Buffer. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 5438-5445.	4.6	18
20	Birth and Development of the $\hat{a} {\in} \infty$ Electromagnetic Fields $\hat{a} {\in} {\bullet} Group.$, 2019, , 23-36.		0
21	10.1063/1.5053564.1. , 2019, , .		О
22	Measuring zinc in biological nanovesicles by multiple analytical approaches. Journal of Trace Elements in Medicine and Biology, 2018, 48, 58-66.	3.0	5
23	Scanning microwave microscopy of buried CMOS interconnect lines with nanometer resolution. International Journal of Microwave and Wireless Technologies, 2018, 10, 556-561.	1.9	6
24	Systematic Evaluation of Spikes Due to Interference Between Cascaded Filters. IEEE Transactions on Microwave Theory and Techniques, 2018, , 1-6.	4.6	9
25	A Method for Fast and Reliable Analysis and Optimization of Side-Coupled Cavity Filters and Multiplexers. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 3847-3856.	4.6	6
26	Generalized Thru-Reflect-Line Calibration Technique for the Measurement of Multimodal Radiating Waveguides. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 844-847.	4.0	3
27	Nano Probing for Microwave Engineers: Calculating Probe-Sample Capacitance and Charge Distribution of a Near-Field Scanning Microwave Microscope on a Nanoscale. IEEE Microwave Magazine, 2017, 18, 71-75.	0.8	5
28	Scanning microwave microscopy of aluminum CMOS interconnect lines buried in oxide and water. , 2017, , .		1
29	Developments of microwave microscopy for application to biological samples. , 2017, , .		5
30	Imaging of exosomes by broadband scanning microwave microscopy. , 2016, , .		7
31	Investigation of Fullerene Exposure of Breast Cancer Cells by Time-Gated Scanning Microwave Microscopy. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4823-4831.	4.6	21
32	Robust control of piezostage for nanoscale three-dimensional images acquisition. , 2016, , .		3
33	Broadband near-field scanning microwave microscopy investigation of fullerene exposure of breast cancer cells. , 2016, , .		4
34	Design and Fabrication of a Dielectricless Substrate-Integrated Waveguide. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 256-261.	2.5	31
35	Time-Domain Reflectometry for Near-Field Scanning Microwave Microscopy. , 2015, , .		4
36	Synthetic holography based on scanning microcavity. AIP Advances, 2015, 5, 117125.	1.3	10

#	Article	IF	CITATIONS
37	Full electromagnetic simulation of a scanning microwave microscope for quantitative estimation of material properties. , 2015, , .		2
38	Imaging of biological structures by Near-Field Microwave Microscopy. , 2015, , .		5
39	Modeling and design of microwave filters employing overmoded empty cylindrical resonators. , 2015, ,		4
40	Determining the Efficiency of Fast Ultrahigh-density Writing of Low-Conductivity Patterns on Semiconducting Polymers. Materials Research Society Symposia Proceedings, 2015, 1729, 125-130.	0.1	1
41	Microwave characterization of anisotropic graphene by applying the Duality theorem. Journal of Computational Electronics, 2015, 14, 214-221.	2.5	4
42	Near field microwave microscopy for nanoscale characterization, imaging and patterning of graphene. , 2014, , .		3
43	Optical microcavity scanning 3D tomography. Optics Letters, 2014, 39, 5495.	3.3	3
44	A Methodology for RF modeling of packages with external pin measurements. International Journal of RF and Microwave Computer-Aided Engineering, 2014, 24, 623-634.	1.2	4
45	Fiber-optic scanning microscopy for imaging in liquid environment: A novel technique for biological applications. , 2014, , .		0
46	Near-Field Microwave Investigation of Electrical Properties of Graphene-ITO Electrodes for LED Applications. Journal of Display Technology, 2013, 9, 504-510.	1.2	9
47	A Technique for the Measurement of the Generalized Scattering Matrix of Overmoded Waveguide Devices. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 2705-2714.	4.6	12
48	Fast ultrahigh-density writing of low-conductivity patterns on semiconducting polymers. Nature Communications, 2013, 4, 2668.	12.8	13
49	Infrared imaging of fixed-cells through micro-cavity fiber optic scanning microscopy. Proceedings of SPIE, 2013, , .	0.8	2
50	Corrections to "A Technique for the Measurement of the Generalized Scattering Matrix of Overmoded Waveguide Devices―[Jul 13 2705-2714]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 4283-4283.	4.6	0
51	Infrared imaging in liquid through an extrinsic optical microcavity. Optics Letters, 2013, 38, 5094.	3.3	10
52	Graphene etching by a Near-Field Scanning Microwave Microscope. , 2013, , .		4
53	OPTICAL FIBER EXTRINSIC MICRO-CAVITY SCANNING MICROSCOPY. Progress in Electromagnetics Research, 2013, 133, 347-366.	4.4	13
54	Tomographic effects of near-field microwave microscopy in the investigation of muscle cells interacting with multi-walled carbon nanotubes. Applied Physics Letters, 2012, 101, .	3.3	34

#	Article	IF	CITATIONS
55	High resolution imaging of few-layer graphene by Near-Field Scanning Microwave Microscopy. , 2012, , .		3
56	High Resolution Scanning Microwave Microscopy for Applications in Liquid Environment. IEEE Microwave and Wireless Components Letters, 2012, 22, 595-597.	3.2	27
57	Disentangling time in a near-field approach to scanning probe microscopy. Nanoscale, 2011, 3, 3589.	5.6	46
58	A methodology for RF modeling of packages using IC known-loads. , 2011, , .		4
59	Calibration Protocol for Broadband Near-Field Microwave Microscopy. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2769-2776.	4.6	60
60	A Multichannel Model for the Self-Consistent Analysis of Coherent Transport in Graphene Nanoribbons. ACS Nano, 2011, 5, 6109-6118.	14.6	19
61	USING CORRELATION MAPS IN A WIDE-BAND MICROWAVE GPR. Progress in Electromagnetics Research B, 2011, 30, 371-387.	1.0	3
62	Experimental pressure sensing and technology of piezoelectric microwave/RF MEMS filters. International Journal of Microwave and Wireless Technologies, 2011, 3, 587-593.	1.9	4
63	ELF-EMFs INDUCED EFFECTS ON CELL LINES: CONTROLLING ELF GENERATION IN LABORATORY. Progress in Electromagnetics Research B, 2010, 24, 131-153.	1.0	13
64	Algorithm for reduction of noise in ultramicroscopy and application to near-field microwave microscopy. Electronics Letters, 2010, 46, 50.	1.0	10
65	Stationary Mode Distribution and Sidewall Roughness Effects in Overmoded Optical Waveguides. Journal of Lightwave Technology, 2010, 28, 1510-1520.	4.6	14
66	Low-Coherence Interferometry Optical Sensor for the Characterization of Deposited Thin Film. , 2010, , .		0
67	Electronic properties of carbon nanotubes investigated by means of standard electromagnetic simulators. Physical Review B, 2007, 75, .	3.2	14
68	Practical design of a high-power tuning-less W-band triplexer for ground radar surveillance systems. IET Microwaves, Antennas and Propagation, 2007, 1, 822.	1.4	7
69	Modified Adaptive Prototype Inclusive of the External Couplings for the Design of Coaxial Filters. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 1905-1911.	4.6	17
70	A Calibration Approach for the Segmentation and Analysis of Microwave Circuits. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 2124-2134.	4.6	11
71	Design of Low-Cost non-radiative SMA-SIW Launchers. , 2006, , .		14
72	Comments on "On deembedding of port discontinuities in full-wave CAD models of multiport circuits" and related comments. IEEE Transactions on Microwave Theory and Techniques, 2005, 53, 1829.	4.6	2

#	Article	IF	CITATIONS
73	On the extension of commercial planar circuit CAD packages to the analysis of two-port waveguide components. International Journal of RF and Microwave Computer-Aided Engineering, 2003, 13, 113-117.	1.2	0
74	A C-Band Quasi-Optical Self-Oscillating Balanced Mixer. , 2001, , .		0
75	A short-open deembedding technique for method-of-moments-based electromagnetic analyses. IEEE Transactions on Microwave Theory and Techniques, 2001, 49, 624-628.	4.6	44
76	Full-wave modeling of linear FETs for millimeter waves. IEEE Transactions on Microwave Theory and Techniques, 2001, 49, 1443-1450.	4.6	2
77	A 3-D integral equation-based approach to the analysis of real-life MMICs application to microelectromechanical systems. IEEE Transactions on Microwave Theory and Techniques, 2001, 49, 2235-2240.	4.6	29
78	Spectral domain approach to 2D-modelling of open planar structures with thick lossy conductors. IET Microwaves Antennas and Propagation, 2000, 147, 321.	1.2	9
79	General constraints on the propagation of complex waves in closed lossless isotropic waveguides. IEEE Transactions on Microwave Theory and Techniques, 1998, 46, 512-516.	4.6	9
80	Electromagnetic investigation on the propagation in distributed active devices. IET Microwaves Antennas and Propagation, 1997, 144, 281.	1.2	2
81	Modal Propagation, Energy Storage, and Dissipation in Uniform, Linear, Isotropic Waveguides. Electromagnetics, 1996, 16, 213-227.	0.7	1
82	Efficient full-wave analysis of stratified planar structures and unbiased TW-FET's. IEEE Transactions on Microwave Theory and Techniques, 1995, 43, 1322-1329.	4.6	12
83	A new approach to the efficient determination of the hybrid and complex spectrum of inhomogeneous, closed waveguide. , 1995, , .		1
84	Accurate modeling of high frequency microelectromechanical systems (MEMS) switches in time- and frequency-domainc. Advances in Radio Science, 0, 1, 135-138.	0.7	1