
Jan Kormanec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7361401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
2	Microarray-Based Analysis of the Staphylococcus aureus σB Regulon. Journal of Bacteriology, 2004, 186, 4085-4099.	1.0	363
3	Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nature Reviews Microbiology, 2006, 4, 383-394.	13.6	279
4	Role of the Two-Component Regulator CpxAR in the Virulence of Salmonella enterica Serotype Typhimurium. Infection and Immunity, 2004, 72, 4654-4661.	1.0	129
5	The positions of the sigma-factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Molecular Microbiology, 1996, 21, 593-603.	1.2	120
6	A new RNA polymerase sigma factor, ?Fis required for the late stages of morphological differentiation in Streptomyces spp Molecular Microbiology, 1995, 17, 37-48.	1.2	114
7	New members of theEscherichia coliÃEregulon identified by a two-plasmid system. FEMS Microbiology Letters, 2003, 225, 1-7.	0.7	114
8	Molecular Analysis and Organization of the σ B Operon in Staphylococcus aureus. Journal of Bacteriology, 2005, 187, 8006-8019.	1.0	104
9	Identification of the l̈ f E regulon of Salmonella enterica serovar Typhimurium. Microbiology (United) Tj ETQq1 1	0.784314 0.7	rgBT /Overlo
10	Ϊƒ ^B and the Ϊƒ ^B -Dependent <i>arlRS</i> and <i>yabJ-spoVG</i> Loci Affect Capsule Formation in <i>Staphylococcus aureus</i> . Infection and Immunity, 2007, 75, 4562-4571.	1.0	72
11	Nuclear migration in Saccbaromyces cerevisiae is controlled by the highly repetitive 313 kDa NUM1 protein. Molecular Genetics and Genomics, 1991, 230, 277-787.	2.4	71
12	Functional Characterization of the σ ^B -Dependent <i>yabJ</i> - <i>spoVG</i> Operon in <i>Staphylococcus aureus</i> : Role in Methicillin and Glycopeptide Resistance. Antimicrobial Agents and Chemotherapy, 2009, 53, 1832-1839.	1.4	70
13	sae is essential for expression of the staphylococcal adhesins Eap and Emp. Microbiology (United) Tj ETQq1 1 0.7	784314 rg 0.7	gBT /Overloc
14	Transcriptional Studies and Regulatory Interactions between the phoR - phoP Operon and the phoU , mtpA , and ppk Genes of Streptomyces lividans TK24. Journal of Bacteriology, 2006, 188, 677-686.	1.0	67
15	Role of ÏfB in the Expression of Staphylococcus aureus Cell Wall Adhesins ClfA and FnbA and Contribution to Infectivity in a Rat Model of Experimental Endocarditis. Infection and Immunity, 2005, 73, 990-998.	1.0	65
16	Increased heterologous production of the antitumoral polyketide mithramycin A by engineered Streptomyces lividans TK24 strains. Applied Microbiology and Biotechnology, 2018, 102, 857-869.	1.7	63
17	Regulation of ppk Expression and In Vivo Function of Ppk in Streptomyces lividans TK24. Journal of Bacteriology, 2006, 188, 6269-6276.	1.0	60
18	Transcriptional analysis of therpoEgene encoding extracytoplasmic stress response sigma factor ÃEinSalmonella entericaserovar Typhimurium. FEMS Microbiology Letters, 2003, 226, 307-314.	0.7	53

#	Article	IF	CITATIONS
19	Salmonella enterica Serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection. Microbiology (United Kingdom), 2009, 155, 873-881.	0.7	52
20	Analyzing the Developmental Expression of Sigma Factors with S1-Nuclease Mapping. , 2001, 160, 481-494.		48
21	Stress-response sigma factor Ïf Η is essential for morphological differentiation of Streptomyces coelicolor A3(2). Archives of Microbiology, 2001, 177, 98-106.	1.0	47
22	Cloning and characterization of a polyketide synthase gene cluster involved in biosynthesis of a proposed angucycline-like polyketide auricin in Streptomyces aureofaciens CCM 3239. Gene, 2002, 297, 197-208.	1.0	47
23	Identification and transcriptional characterization of the gene encoding the stress-response à factor ÃHinStreptomyces coelicolorA3(2). FEMS Microbiology Letters, 2000, 189, 31-38.	0.7	46
24	Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Archives of Microbiology, 2004, 181, 384-389.	1.0	42
25	A two-plasmid system for identification of promoters recognized by RNA polymerase containing extracytoplasmic stress response ÏfE in Escherichia coli. Journal of Microbiological Methods, 2001, 45, 103-111.	0.7	38
26	Catabolite Control Protein E (CcpE) Is a LysR-type Transcriptional Regulator of Tricarboxylic Acid Cycle Activity in Staphylococcus aureus. Journal of Biological Chemistry, 2013, 288, 36116-36128.	1.6	38
27	Differential expression of principal sigma factor homologues ofStreptomyces aureofacienscorrelates with the developmental stage. Nucleic Acids Research, 1993, 21, 3647-3652.	6.5	37
28	Cloning and Expression of Metagenomic DNA in Streptomyces lividans and Subsequent Fermentation for Optimized Production. Methods in Molecular Biology, 2017, 1539, 99-144.	0.4	36
29	Four genes in Streptomyces aureofaciens containing a domain characteristic of principal sigma factors. Gene, 1992, 122, 63-70.	1.0	33
30	The role of the TetR-family transcriptional regulator Aur1R in negative regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology (United Kingdom), 2010, 156, 2374-2383.	0.7	33
31	The role of two SARP family transcriptional regulators in regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology (United Kingdom), 2011, 157, 1629-1639.	0.7	33
32	Identification and characterization of an indigoidine-like gene for a blue pigment biosynthesis in Streptomyces aureofaciens CCM 3239. Folia Microbiologica, 2010, 55, 119-125.	1.1	32
33	High-level expression of Na+/d-glucose cotransporter (SGLT1) in a stably transfected Chinese hamster ovary cell line. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1373, 309-320.	1.4	31
34	TheBrevibacterium flavumsigma factor SigB has a role in the environmental stress response. FEMS Microbiology Letters, 2002, 216, 77-84.	0.7	31
35	Optimization of a two-plasmid system for the identification of promoters recognized by RNA polymerase containingStaphylococcus aureusalternative sigma factor ÅÅfB. FEMS Microbiology Letters, 2004, 232, 173-179.	0.7	31
36	Characterization of a regulatory gene essential for the production of the angucycline-like polyketide antibiotic auricin in Streptomyces aureofaciens CCM 3239. Microbiology (United Kingdom), 2005, 151, 2693-2706.	0.7	29

#	Article	IF	CITATIONS
37	Development of a Biosensor Concept to Detect the Production of Cluster-Specific Secondary Metabolites. ACS Synthetic Biology, 2017, 6, 1026-1033.	1.9	28
38	Effect of Inactivation of degS on Salmonella enterica Serovar Typhimurium In Vitro and In Vivo. Infection and Immunity, 2005, 73, 459-463.	1.0	27
39	Small outer-membrane lipoprotein, SmpA, is regulated by σ E and has a role in cell envelope integrity and virulence of Salmonella enterica serovar Typhimurium. Microbiology (United Kingdom), 2008, 154, 979-988.	0.7	27
40	Utilization of a reporter system based on the blue pigment indigoidine biosynthetic gene bpsA for detection of promoter activity and deletion of genes in Streptomyces. Journal of Microbiological Methods, 2015, 113, 1-3.	0.7	27
41	A method for the identification of promoters recognized by RNA polymerase containing a particular sigma factor: cloning of a developmentally regulated promoter and corresponding gene directed by the Streptomyces aureofaciens sigma factor RpoZ. Gene, 1998, 208, 43-50.	1.0	26
42	A Î ³ -butyrolactone autoregulator-receptor system involved in the regulation of auricin production in Streptomyces aureofaciens CCM 3239. Applied Microbiology and Biotechnology, 2015, 99, 309-325.	1.7	26
43	Cloning and Transcriptional Characterization of Two Sigma Factor Genes, sigA and sigB , from Brevibacterium flavum. Current Microbiology, 2001, 43, 249-254.	1.0	25
44	The dpsA Gene of Streptomyces coelicolor: Induction of Expression from a Single Promoter in Response to Environmental Stress or during Development. PLoS ONE, 2011, 6, e25593.	1.1	24
45	The Anti-Anti-Sigma Factor BldG Is Involved in Activation of the Stress Response Sigma Factor Ï <i>f</i> ^H in <i>Streptomyces coelicolor</i> A3(2). Journal of Bacteriology, 2010, 192, 5674-5681.	1.0	23
46	The Streptomyces aureofaciens homologue of the whiG gene encoding a putative sigma factor essential for sporulation. Gene, 1994, 143, 101-103.	1.0	22
47	Activity of theStreptomyces coelicolorstress-response sigma factor ÃÂfHis regulated by an anti-sigma factor. FEMS Microbiology Letters, 2002, 209, 229-235.	0.7	21
48	Cascade of extracytoplasmic function sigma factors in <i>Mycobacterium tuberculosis</i> : identification of a Āƒ ^J -dependent promoter upstream of <i>sigl</i> . FEMS Microbiology Letters, 2008, 280, 120-126.	0.7	21
49	Intriguing properties of the angucycline antibiotic auricin and complex regulation of its biosynthesis. Applied Microbiology and Biotechnology, 2014, 98, 45-60.	1.7	21
50	Stress-response sigma factor σH directs expression of the gltB gene encoding glutamate synthase in Streptomyces coelicolor A3(2). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 149-154.	2.4	20
51	Multiple regulatory genes in the salinomycin biosynthetic gene cluster ofStreptomyces albus CCM 4719. Folia Microbiologica, 2007, 52, 359-65.	1.1	19
52	The antitumor antibiotic mithramycin: new advanced approaches in modification and production. Applied Microbiology and Biotechnology, 2020, 104, 7701-7721.	1.7	19
53	Differential expression of two sporulation specific σ factors of Streptomyces aureofaciens correlates with the developmental stage. Gene, 1996, 181, 19-27.	1.0	17
54	Disruption of a sigma factor gene, sigF, affects an intermediate stage of spore pigment production in Streptomyces aureofaciens. FEMS Microbiology Letters, 2006, 153, 371-377.	0.7	17

#	Article	IF	CITATIONS
55	The periplasmic chaperone Skp is required for successful Salmonella Typhimurium infection in a murine typhoid model. Microbiology (United Kingdom), 2011, 157, 848-858.	0.7	17
56	Regulation of an alternative sigma factor $ f $ by a partner switching mechanism with an anti-sigma factor Prsl and an anti-anti-sigma factor Arsl in Streptomyces coelicolor A3(2). Gene, 2012, 492, 71-80.	1.0	17
57	Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces. Applied Microbiology and Biotechnology, 2019, 103, 5463-5482.	1.7	17
58	A Method for Isolation of Small DNA Fragments from Agarose and Polyacrylamide Gels. Analytical Biochemistry, 2001, 293, 138-139.	1.1	16
59	Characterization of the polyketide spore pigment cluster whiESa in Streptomyces aureofaciens CCM3239. Archives of Microbiology, 2004, 182, 388-395.	1.0	16
60	Cascade of sigma factors in streptomycetes: identification of a new extracytoplasmic function sigma factor ÏfJ that is under the control of the stress-response sigma factor ÏfH in Streptomyces coelicolor A3(2). Archives of Microbiology, 2006, 186, 435-446.	1.0	16
61	Strict control of auricin production in Streptomyces aureofaciens CCM 3239 involves a feedback mechanism. Applied Microbiology and Biotechnology, 2013, 97, 2413-2421.	1.7	16
62	An efficient blue-white screening system for markerless deletions and stable integrations in Streptomyces chromosomes based on the blue pigment indigoidine biosynthetic gene bpsA. Applied Microbiology and Biotechnology, 2018, 102, 10231-10244.	1.7	16
63	Genetic manipulation of pathway regulation for overproduction of angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239. Folia Microbiologica, 2011, 56, 276-282.	1.1	14
64	A gene determining a new member of the SARP family contributes to transcription of genes for the synthesis of the angucycline polyketide auricin inStreptomyces aureofaciensCCM 3239. FEMS Microbiology Letters, 2013, 346, 45-55.	0.7	14
65	The gene clusteraur1for the angucycline antibiotic auricin is located on a large linear plasmid pSA3239 inStreptomyces aureofaciensCCM 3239. FEMS Microbiology Letters, 2013, 342, 130-137.	0.7	14
66	Streptomyces aureofaciens whiBgene encoding putative transcription factor essential for differentiation. Nucleic Acids Research, 1993, 21, 2512-2512.	6.5	13
67	Mapping the Transcription Start Points of the <i>Staphylococcus aureus eap</i> , <i>emp</i> , and <i>vwb</i> Promoters Reveals a Conserved Octanucleotide Sequence That Is Essential for Expression of These Genes. Journal of Bacteriology, 2008, 190, 447-451.	1.0	13
68	Ϊƒ s-Dependent carbon-starvation induction of pbpG (PBP 7) is required for the starvation-stress response in Salmonella enterica serovar Typhimurium. Microbiology (United Kingdom), 2007, 153, 2148-2158.	0.7	13
69	Cloning, sequencing and expression in Escherichia coli of a Streptomyces aureofaciens gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene, 1995, 165, 77-80.	1.0	12
70	Secretome Dynamics in a Gram-Positive Bacterial Model. Molecular and Cellular Proteomics, 2019, 18, 423-436.	2.5	12
71	Disruption of a glycogen-branching enzyme gene, glgB, specifically affects the sporulation-associated phase of glycogen accumulation in Streptomyces aureofaciens. Microbiology (United Kingdom), 1996, 142, 1201-1208.	0.7	12
72	ldentification of promoters recognized by RNA polymerase containing Mycobacterium tuberculosis stress-response sigma factor σF. Archives of Microbiology, 2007, 187, 185-197.	1.0	11

#	Article	IF	CITATIONS
73	Monitoring Protein Secretion in Streptomyces Using Fluorescent Proteins. Frontiers in Microbiology, 2018, 9, 3019.	1.5	11
74	Cloning of the putative glycogen branching enzyme gene, glgB, from Streptomyces aureofaciens. Biochimica Et Biophysica Acta - General Subjects, 1994, 1200, 334-336.	1.1	10
75	The ssgB gene, encoding a member of the regulon of stress-response sigma factor ?H, is essential for aerial mycelium septation in Streptomyces coelicolor A3(2). Archives of Microbiology, 2003, 180, 380-384.	1.0	10
76	Characterization of the ÃE-dependentrpoEp3promoter ofSalmonella entericaserovar Typhimurium. FEMS Microbiology Letters, 2006, 261, 53-59.	0.7	10
77	Complete Genome Sequence of <i>Streptomyces lavendulae</i> subsp. <i>lavendulae</i> CCM 3239 (Formerly " <i>Streptomyces aureofaciens</i> CCM 3239â€), a Producer of the Angucycline-Type Antibiotic Auricin. Genome Announcements, 2018, 6, .	0.8	10
78	Rapid identification of <i>Streptomyces</i> tetracycline producers by MALDI-TOF mass spectrometry. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 1083-1093.	0.9	10
79	The Streptomyces aureofaciens homologue of the sporulation gene whiH is dependent on rpoZ-encoded σ factor. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1444, 80-84.	2.4	9
80	The σF-specific anti-sigma factor RsfA is one of the protein kinases that phosphorylates the pleiotropic anti-anti-sigma factor BldG in Streptomyces coelicolor A3(2). Gene, 2014, 538, 280-287.	1.0	9
81	Unusual features of the large linear plasmid pSA3239 from Streptomyces aureofaciens CCM 3239. Gene, 2018, 642, 313-323.	1.0	9
82	Identification of nucleotides critical for activity of the ÃE-dependentrpoEp3promoter inSalmonella entericaserovar Typhimurium. FEMS Microbiology Letters, 2004, 238, 227-233.	0.7	8
83	Localization and characterization of a temporally regulated promoter from the Streptomyces aureofaciens 2201 plasmid pSA 2201. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1088, 119-126.	2.4	7
84	Cloning and sequencing of the gene encoding a ribonuclease from Streptomyces aureofaciens CCM3239. Gene, 1992, 119, 147-148.	1.0	7
85	Streptomyces aureofaciens sporulation-specific sigma factor rpoZ directs expression of a gene encoding protein similar to hydrolases involved inAdegradation of the lignin-related biphenyl compounds. Research in Microbiology, 2001, 152, 883-888.	1.0	7
86	Identification of nucleotides critical for activity of the ?-dependent promoter in serovar Typhimurium. FEMS Microbiology Letters, 2004, 238, 227-233.	0.7	7
87	Sequence analysis and gene amplification study of the penicillin biosynthesis gene cluster from different strains of Penicillium chrysogenum. Biologia (Poland), 2010, 65, 1-6.	0.8	7
88	A Structural Analysis of the Angucycline-Like Antibiotic Auricin from Streptomyces lavendulae Subsp. Lavendulae CCM 3239 Revealed Its High Similarity to Griseusins. Antibiotics, 2019, 8, 102.	1.5	7
89	Optimization of a two-plasmid system for the identification of promoters recognized by RNA polymerase containingMycobacterium tuberculosis stress response σ factor, ̃F. Folia Microbiologica, 2004, 49, 685-691.	1.1	6
90	Cloning and Characterization of a New Polyketide Synthase Gene Cluster inStreptomyces aureofaciensCCM 3239. DNA Sequence, 2004, 15, 188-195.	0.7	6

#	Article	IF	CITATIONS
91	Characterisation of the genes involved in the biosynthesis and attachment of the aminodeoxysugar d-forosamine in the auricin gene cluster of Streptomyces aureofaciens CCM3239. Applied Microbiology and Biotechnology, 2016, 100, 3177-3195.	1.7	6
92	A gene (hur) from Streptomyces aureofaciens, conferring resistance to hydroxyurea, is related to genes encoding streptomycin phosphotransferase. Gene, 1992, 114, 133-137.	1.0	5
93	A New Family of Transcriptional Regulators Activating Biosynthetic Gene Clusters for Secondary Metabolites. International Journal of Molecular Sciences, 2022, 23, 2455.	1.8	5
94	Cross-Recognition of Promoters by the Nine SigB Homologues Present in Streptomyces coelicolor A3(2). International Journal of Molecular Sciences, 2021, 22, 7849.	1.8	4
95	Corrigendum to "Optimization of a two-plasmid system for the identification of promoters recognized by RNA polymerase containingStaphylococcus aureusalternative sigma factor ÃB―[FEMS Microbiol. Lett. 232 (2004) 173–179]. FEMS Microbiology Letters, 2004, 235, 211-211.	0.7	3
96	Pleiotropic anti-anti-sigma factor BldG is phosphorylated by several anti-sigma factor kinases in the process of activating multiple sigma factors in Streptomyces coelicolor A3(2). Gene, 2020, 755, 144883.	1.0	3
97	An efficient system for stable markerless integration of large biosynthetic gene clusters into Streptomyces chromosomes. Applied Microbiology and Biotechnology, 2021, 105, 2123-2137.	1.7	3
98	Screening Systems for Stable Markerless Genomic Deletions/Integrations in Streptomyces Species. Methods in Molecular Biology, 2021, 2296, 91-141.	0.4	3
99	Characterization of the micA gene encoding a small regulatory σE-dependent RNA in Salmonella enterica serovar Typhimurium. Folia Microbiologica, 2011, 56, 59-65.	1.1	2
100	Phenotypic analysis of Salmonella enterica serovar Typhimurium rpoE mutants encoding RNA polymerase extracytoplasmic stress response sigma factors σE with altered promoter specificity. Archives of Microbiology, 2013, 195, 27-36.	1.0	2
101	The Role of Alternative Sigma Factors in Pathogen Virulence. , 2017, , 229-303.		2
102	A mutant of Salmonella enterica serovar Typhimurium RNA polymerase extracytoplasmic stress response sigma factor ÏfE with altered promoter specificity. Molecular Genetics and Genomics, 2009, 282, 119-129.	1.0	1
103	The expression of the rpoE operon is fine-tuned by the internal rseAp promoter in Salmonella enterica serovar Typhimurium. Biologia (Poland), 2010, 65, 932-938.	0.8	1
104	The linear plasmid pSA3239 is essential for the replication of the Streptomyces lavendulae subsp. lavendulae CCM 3239 chromosome. Research in Microbiology, 2021, 172, 103870.	1.0	1
105	Bacterial Regulatory Proteins. International Journal of Molecular Sciences, 2022, 23, 6854.	1.8	1
106	The gene downstream of Streptomyces aureofaciens whiB encodes a large protein with proposed transmembrane localization, and is induced by glucose. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1397, 151-155.	2.4	0