Xiaodong Guo

List of Publications by Citations

Source: https://exaly.com/author-pdf/7360963/xiaodong-guo-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

148
papers4,204
citations37
h-index58
g-index159
ext. papers5,893
ext. citations9
avg, IF5.98
L-index

#	Paper	IF	Citations
148	Co(OH) Nanoparticle-Encapsulating Conductive Nanowires Array: Room-Temperature Electrochemical Preparation for High-Performance Water Oxidation Electrocatalysis. <i>Advanced Materials</i> , 2018 , 30, 1705366	24	240
147	Enabling Effective Electrocatalytic N Conversion to NH by the TiO Nanosheets Array under Ambient Conditions. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	174
146	Carbon-Coated Na Fe (P O) Cathode Material for High-Rate and Long-Life Sodium-Ion Batteries. <i>Advanced Materials</i> , 2017 , 29, 1605535	24	123
145	Polyanion and cation co-doping stabilized Ni-rich Nito Al material as cathode with enhanced electrochemical performance for Li-ion battery. <i>Nano Energy</i> , 2019 , 63, 103818	17.1	123
144	A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery. <i>Advanced Energy Materials</i> , 2019 , 9, 1803978	21.8	118
143	Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. <i>Electrochimica Acta</i> , 2018 , 291, 84-94	6.7	106
142	High-Abundance and Low-Cost Metal-Based Cathode Materials for Sodium-Ion Batteries: Problems, Progress, and Key Technologies. <i>Advanced Energy Materials</i> , 2019 , 9, 1803609	21.8	104
141	Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	101
140	Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 117-122	8.3	94
139	Exposing {010} Active Facets by Multiple-Layer Oriented Stacking Nanosheets for High-Performance Capacitive Sodium-Ion Oxide Cathode. <i>Advanced Materials</i> , 2018 , 30, e1803765	24	92
138	A LayeredIIunnel Intergrowth Structure for High-Performance Sodium-Ion Oxide Cathode. <i>Advanced Energy Materials</i> , 2018 , 8, 1800492	21.8	85
137	Subunits controlled synthesis of Fe2O3 multi-shelled core@hell microspheres and their effects on lithium/sodium ion battery performances. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10092-10099	13	82
136	Construction of 3D pomegranate-like Na3V2(PO4)3/conducting carbon composites for high-power sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9833-9841	13	77
135	FeP nanorod arrays on carbon cloth: a high-performance anode for sodium-ion batteries. <i>Chemical Communications</i> , 2018 , 54, 9341-9344	5.8	76
134	Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 275, 200-206	8.9	73
133	Design and Synthesis of Layered NaTiO and Tunnel NaTiO Hybrid Structures with Enhanced Electrochemical Behavior for Sodium-Ion Batteries. <i>Advanced Science</i> , 2018 , 5, 1800519	13.6	71
132	Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11493-11510	13	69

131	Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance. <i>Journal of Power Sources</i> , 2019 , 423, 144-1	5 ^{8.9}	68
130	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001334	15.6	66
129	Cu Dual-Doped Layer-Tunnel Hybrid NaMnCu O as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 10147-10156	9.5	66
128	Efficient Hydrogen Evolution Electrocatalysis at Alkaline pH by Interface Engineering of NiP-CeO. <i>Inorganic Chemistry</i> , 2018 , 57, 548-552	5.1	63
127	Development and Investigation of a NASICON-Type High-Voltage Cathode Material for High-Power Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2449-2456	16.4	60
126	Rational design of carbon materials as anodes for potassium-ion batteries. <i>Energy Storage Materials</i> , 2021 , 34, 483-507	19.4	59
125	Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. <i>Journal of Alloys and Compounds</i> , 2016 , 688, 790-797	5.7	57
124	Organic Cross-Linker Enabling a 3D Porous SkeletonBupported Na3V2(PO4)3/Carbon Composite for High Power Sodium-Ion Battery Cathode. <i>Small Methods</i> , 2019 , 3, 1800169	12.8	57
123	Effect of niobium doping on the structure and electrochemical performance of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials for lithium ion batteries. <i>Ceramics International</i> , 2017 , 43, 3866-3872	5.1	54
122	Deciphering an Abnormal Layered-Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1491-1495	16.4	52
121	Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Li-Rich Layered Li[Li0.2Ni0.2Mn0.6]O2 Oxides. <i>Advanced Energy Materials</i> , 2019 , 9, 1803094	21.8	52
120	Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries. <i>ACS Applied Materials & Discrete Section</i> 2017, 9, 21267-21275	9.5	48
119	P2-type Na 0.67 Mn 0.72 Ni 0.14 Co 0.14 O 2 with K + doping as new high rate performance cathode material for sodium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 216, 51-57	6.7	48
118	Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 25391-25400	13	46
117	Interfacial Regulation of Ni-Rich Cathode Materials with an Ion-Conductive and Pillaring Layer by Infusing Gradient Boron for Improved Cycle Stability. <i>ACS Applied Materials & Discrete Stability</i> , 12, 10240-10251	9.5	45
116	High-Performance Electrochemical NO Reduction into NH by MoS Nanosheet. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 25263-25268	16.4	42
115	Cauliflower-like MnO@C/N composites with multiscale, expanded hierarchical ordered structures as electrode materials for Lithium- and Sodium-ion batteries. <i>Electrochimica Acta</i> , 2017 , 246, 931-940	6.7	41
114	Promoting the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via LaAlO3 coating. Journal of Alloys and Compounds, 2018, 766, 546-555	5.7	41

113	CoreBhell MOF@COF Motif Hybridization: Selectively Functionalized Precursors for Titanium Dioxide Nanoparticle-Embedded Nitrogen-Rich Carbon Architectures with Superior Capacitive Deionization Performance. <i>Chemistry of Materials</i> , 2021 , 33, 1657-1666	9.6	41
112	Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials. <i>Electrochimica Acta</i> , 2017 , 232, 123-131	6.7	37
111	Dual-site lattice modification regulated cationic ordering for Ni-rich cathode towards boosted structural integrity and cycle stability. <i>Chemical Engineering Journal</i> , 2021 , 403, 126314	14.7	37
110	Enabling electrochemical conversion of N2 to NH3 under ambient conditions by a CoP3 nanoneedle array. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17956-17959	13	35
109	Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. Energy and Environmental Science, 2021 , 14, 2244-2262	35.4	35
108	MoC-Embedded Carambola-like N,S-Rich Carbon Framework as the Interlayer Material for High-Rate Lithium-Sulfur Batteries in a Wide Temperature Range. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 22971-22980	9.5	34
107	A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries. <i>Journal of Power Sources</i> , 2021 , 485, 229331	8.9	32
106	N, O co-doped chlorella-based biomass carbon modified separator for lithium-sulfur battery with high capacity and long cycle performance. <i>Journal of Colloid and Interface Science</i> , 2021 , 585, 43-50	9.3	31
105	Hydrangea-Like CuS with Irreversible Amorphization Transition for High-Performance Sodium-Ion Storage. <i>Advanced Science</i> , 2020 , 7, 1903279	13.6	30
104	Synthesis Strategies and Structural Design of Porous Carbon-Incorporated Anodes for Sodium-Ion Batteries. <i>Small Methods</i> , 2020 , 4, 1900163	12.8	30
103	Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions. <i>Nanoscale Advances</i> , 2019 , 1, 961-964	5.1	29
102	Enhanced sodium storage property of sodium vanadium phosphate via simultaneous carbon coating and Nb5+ doping. <i>Chemical Engineering Journal</i> , 2020 , 386, 123953	14.7	28
101	A Novel NASICON-Typed Na4VMn0.5Fe0.5(PO4)3 Cathode for High-Performance Na-Ion Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2100729	21.8	28
100	Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11879-11907	13	28
99	Insight into the Origin of Capacity Fluctuation of NaTiO Anode in Sodium Ion Batteries. <i>ACS Applied Materials & Acs Applied Materials & Acs Acs Applied Materials & Acs Acs Acs Acs Acs Applied Materials & Acs Acs Acs Acs Acs Acs Acs Acs Acs Acs</i>	9.5	27
98	Enhanced constraint and catalysed conversion of lithium polysulfides via composite oxides from spent layered cathodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17867-17875	13	25
97	NiP Nanosheets on Carbon Cloth: An Efficient Flexible Electrode for Sodium-Ion Batteries. <i>Inorganic Chemistry</i> , 2019 , 58, 6579-6583	5.1	24
96	Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8049-8057	13	24

(2014-2015)

95	An Approach towards Synthesis of Nanoarchitectured LiNi1/3Co1/3Mn1/3O2 Cathode Material for Lithium Ion Batteries. <i>Chinese Journal of Chemistry</i> , 2015 , 33, 261-267	4.9	24	
94	Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2-F cathode. <i>Electrochimica Acta</i> , 2019 , 308, 64-73	6.7	23	
93	Interpreting Abnormal Charge-Discharge Plateau Migration in Cu S during Long-Term Cycling. <i>ACS Applied Materials & Discrete Applied & D</i>	9.5	23	
92	Facile synthesis of Li3V2(Po4)3/C nano-flakes with high-rate performance as cathode material for Li-ion battery. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 215-221	2.6	21	
91	Chemical and Structural Evolution during the Synthesis of Layered Li(Ni,Co,Mn)O2 Oxides. <i>Chemistry of Materials</i> , 2020 , 32, 4984-4997	9.6	20	
90	N-doped carbon nanotubes supported CoSe nanoparticles: A highly efficient and stable catalyst for HO electrosynthesis in acidic media. <i>Nano Research</i> , 2021 , 15, 1-6	10	19	
89	Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. <i>Nano Research</i> , 2022 , 15, 186	10	18	
88	Ion-Doping-Site-Variation-Induced Composite Cathode Adjustment: A Case Study of Layer-Tunnel NaMnO with Mg Doping at Na/Mn Site. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 26938-26945	9.5	17	
87	Poly(ethylene oxide)/Poly(vinylidene Doride)/Li6.4La3Zr1.4Ta0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries. <i>Journal of Power Sources</i> , 2020 , 472, 228461	8.9	17	
86	A Ge/Carbon Atomic-Scale Hybrid Anode Material: A Micro-Nano Gradient Porous Structure with High Cycling Stability. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12539-12546	16.4	17	
85	A fundamental understanding of the Fe/Ti doping induced structure formation process to realize controlled synthesis of layer-tunnel Na0.6MnO2 cathode. <i>Nano Energy</i> , 2020 , 70, 104539	17.1	16	
84	Stabilizing the Structure of Nickel-Rich Lithiated Oxides via Cr Doping as Cathode with Boosted High-Voltage/Temperature Cycling Performance for Li-Ion Battery. <i>Energy Technology</i> , 2020 , 8, 1900498	3.5	16	
83	Hollow Li1.2Mn0.54Ni0.13Co0.13O2 micro-spheres synthesized by a co-precipitation method as a high-performance cathode material for Li-ion batteries. <i>RSC Advances</i> , 2016 , 6, 70091-70098	3.7	15	
82	Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery. <i>Research</i> , 2020 , 2020, 1469301	7.8	15	
81	Development and Investigation of a NASICON-Type High-Voltage Cathode Material for High-Power Sodium-Ion Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 2470-2477	3.6	15	
80	Insight into the Multirole of Graphene in Preparation of High Performance Na2+2xFe2⊠(SO4)3 Cathodes. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16105-16112	8.3	15	
79	TiS2 nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 1986-1989	6.8	14	
78	Influence of vanadium compound coating on lithium-rich layered oxide cathode for lithium-ion batteries. <i>RSC Advances</i> , 2014 , 4, 56273-56278	3.7	14	

77	Synthesis of hierarchical worm-like SnO2@C aggregates and their enhanced lithium storage properties. <i>Journal of Alloys and Compounds</i> , 2015 , 620, 407-412	5.7	14
76	Deciphering an Abnormal Layered-Tunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. <i>Angewandte Chemie</i> , 2020 , 132, 1507-1511	3.6	14
75	Review of the application of biomass-derived porous carbon in lithium-sulfur batteries. <i>Ionics</i> , 2020 , 26, 4765-4781	2.7	14
74	The direct application of spent graphite as a functional interlayer with enhanced polysulfide trapping and catalytic performance for LiB batteries. <i>Green Chemistry</i> , 2021 , 23, 942-950	10	14
73	Synthesis of CoreBhell Structured LiFe0.5Mn0.3Co0.2PO4@C with Remarkable Electrochemical Performance as the Cathode of a Lithium-Ion Battery. <i>ChemElectroChem</i> , 2015 , 2, 896-902	4.3	13
72	Structural elucidation of the degradation mechanism of nickel-rich layered cathodes during high-voltage cycling. <i>Chemical Communications</i> , 2020 , 56, 4886-4889	5.8	13
71	A novel Mn-based P2/tunnel/O3Rtri-phase composite cathode with enhanced sodium storage properties. <i>Chemical Communications</i> , 2020 , 56, 2921-2924	5.8	13
70	Rational synthesis of a ZIF-67@Co-Ni LDH heterostructure and derived heterogeneous carbon-based framework as a highly efficient multifunctional sulfur host. <i>Dalton Transactions</i> , 2020 , 49, 12686-12694	4.3	13
69	Carbon dioxide solid-phase embedding reaction of silicon-carbon nanoporous composites for lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 423, 130127	14.7	13
68	Simultaneous Component Ratio and Particle Size Optimization for High-Performance and High Tap Density P2/P3 Composite Cathode of Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2019 , 6, 5155-5161	4.3	12
67	Mn-Rich Phosphate Cathodes for Na-Ion Batteries with Superior Rate Performance. <i>ACS Energy Letters</i> , 2021 , 97-107	20.1	12
66	A MnS/FeS2 heterostructure with a high degree of lattice matching anchored into carbon skeleton for ultra-stable sodium-ion storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 24024-24035	13	12
65	NaS Treatment and Coherent Interface Modification of the Li-Rich Cathode to Address Capacity and Voltage Decay. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 42660-42668	9.5	12
64	Novel Bifunctional Separator with a Self-Assembled FeOOH/Coated g-CN/KB Bilayer in Lithium-Sulfur Batteries. <i>ACS Applied Materials & Discrete Materials</i> (12, 57859-57869)	9.5	12
63	A rational design of the coupling mechanism of physical adsorption and chemical charge effect for high-performance lithium-sulfur batteries <i>RSC Advances</i> , 2019 , 9, 12710-12717	3.7	11
62	Novel Interlayer on the Separator with the Cr3C2 Compound as a Robust Polysulfide Anchor for LithiumBulfur Batteries. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 7538-7545	3.9	11
61	Revisiting the Preparation Progress of Nano-Structured Si Anodes toward Industrial Application from the Perspective of Cost and Scalability. <i>Advanced Energy Materials</i> ,2102181	21.8	11
60	Structure and electrochemical performance modulation of a LiNiCoMnO cathode material by anion and cation co-doping for lithium ion batteries <i>RSC Advances</i> , 2019 , 9, 36849-36857	3.7	11

(2021-2021)

59	Rapid in-situ fabrication of Fe3O4/Fe7S8@C composite as anode materials for lithium-ion batteries. <i>Materials Research Bulletin</i> , 2021 , 133, 111021	5.1	11
58	SiO Anode: From Fundamental Mechanism toward Industrial Application. Small, 2021, e2102641	11	11
57	Cobalt-doped lithium-rich cathode with superior electrochemical performance for lithium-ion batteries. <i>RSC Advances</i> , 2015 , 5, 2947-2951	3.7	10
56	3D hierarchical rose-like NiP@rGO assembled from interconnected nanoflakes as anode for lithium ion batteries <i>RSC Advances</i> , 2020 , 10, 3936-3945	3.7	10
55	Synthesis of hierarchical Sn/SnO nanosheets assembled by carbon-coated hollow nanospheres as anode materials for lithium/sodium ion batteries <i>RSC Advances</i> , 2020 , 10, 6035-6042	3.7	10
54	General Synthesis of MxS (M = Co, Cu) Hollow Spheres with Enhanced Sodium-Ion Storage Property in Ether-Based Electrolyte. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 1568-1577	3.9	10
53	Self-supported cobalt phosphate nanoarray with pseudocapacitive behavior: An efficient 3D anode material for sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2020 , 848, 156285	5.7	10
52	A Simple Gas-Solid Treatment for Surface Modification of Li-Rich Oxides Cathodes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 23248-23255	16.4	10
51	Relieving capacity decay and voltage fading of Li1.2Ni0.13Co0.13Mn0.54O2 by Mg2+ and PO43-dual doping. <i>Materials Research Bulletin</i> , 2020 , 130, 110923	5.1	9
50	Synergistic effect of uniform lattice cation/anion doping to improve structural and electrochemical performance stability for Li-rich cathode materials. <i>Nanotechnology</i> , 2020 , 31, 455704	3.4	9
49	Synthesis of spinel LiNi0.5Mn1.5O4 as advanced cathode via a modified oxalate co-precipitation method. <i>Ionics</i> , 2016 , 22, 1361-1368	2.7	9
48	Lithium-Ion Batteries: Suppressing Manganese Dissolution via Exposing Stable {111} Facets for High-Performance Lithium-Ion Oxide Cathode (Adv. Sci. 13/2019). <i>Advanced Science</i> , 2019 , 6, 1970076	13.6	9
47	LiNi0.5Mn1.5O4 hollow nano-micro hierarchical microspheres as advanced cathode for lithium ion batteries. <i>Ionics</i> , 2017 , 23, 27-34	2.7	9
46	Understanding Performance Differences from Various Synthesis Methods: A Case Study of Spinel LiCrNiMnO Cathode Material. <i>ACS Applied Materials & Differences</i> , 2016 , 8, 26051-26057	9.5	9
45	The structural origin of enhanced stability of Na3.32Fe2.11Ca0.23(P2O7)2 cathode for Na-ion batteries. <i>Nano Energy</i> , 2021 , 79, 105417	17.1	9
44	CoTe nanoparticle-embedded N-doped hollow carbon polyhedron: an efficient catalyst for H2O2 electrosynthesis in acidic media. <i>Journal of Materials Chemistry A</i> ,	13	9
43	Novel functional separator with self-assembled MnO layer via a simple and fast method in lithium-sulfur battery. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 666-676	9.3	9
42	Suppressing capacity fading and voltage decay of Ni-rich cathode material by dual-ion doping for lithium-ion batteries. <i>Journal of Materials Science</i> , 2021 , 56, 2347-2359	4.3	8

41	Three-Dimensional Chestnut-Like Architecture Assembled from NaTiO(OH)IPHO@N-Doped Carbon Nanosheets with Enhanced Sodium Storage Properties. <i>ACS Applied Materials & Discrete Sodium Storage</i> 2018, 10, 43740-43748	9.5	8
40	A Unique Structure of Highly Stable Interphase and Self-Consistent Stress Distribution Radial-Gradient Porous for Silicon Anode. <i>Advanced Functional Materials</i> , 2022 , 32, 2107897	15.6	8
39	Exposing microstructure evolution of Ni-Rich Ni-Co-Al hydroxide precursor. <i>Chemical Engineering Science</i> , 2021 , 233, 116337	4.4	7
38	Directionally Tailoring Macroporous Honeycomb-Like Structured Carbon Nanofibers toward High-Capacitive Potassium Storage. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 30693-30702	9.5	7
37	Direct conversion of ester bond-rich waste plastics into hard carbon for high-performance sodium storage. <i>Carbon</i> , 2021 , 173, 253-261	10.4	7
36	Silicon/graphite composite anode with constrained swelling and a stable solid electrolyte interphase enabled by spent graphite. <i>Green Chemistry</i> , 2021 , 23, 4531-4539	10	7
35	Recent advance in structure regulation of high-capacity Ni-rich layered oxide cathodes. <i>EcoMat</i> , 2021 , 3, e12141	9.4	7
34	Structural Reconstruction Driven by Oxygen Vacancies in Layered Ni-Rich Cathodes. <i>Advanced Energy Materials</i> ,2200022	21.8	7
33	MoO@C modified separator as an interlayer for high performance lithium-sulfur batteries. <i>Nanotechnology</i> , 2021 , 32, 105206	3.4	6
32	Preparation of intergrown P/O-type biphasic layered oxides as high-performance cathodes for sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13151-13160	13	6
31	Nanowire of WP as a High-Performance Anode Material for Sodium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2019 , 25, 971-975	4.8	6
30	Integrating Multi-Heterointerfaces in a 1D@2D@1D Hierarchical Structure via Autocatalytic Pyrolysis for Ultra-Efficient Microwave Absorption Performance <i>Small</i> , 2022 , e2105411	11	5
29	Enabling Superior Electrochemical Performance of Lithium-Rich Li1.2Ni0.2Mn0.6O2 Cathode Materials by Surface Integration. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 19312-1932	2 3 .9	5
28	Effect of Na2S treatment on the structural and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. <i>Journal of Solid State Electrochemistry</i> , 2018 , 22, 547-556	4 ^{2.6}	4
27	Facile Combustion Synthesis and Electrochemical Performance of the Cathode Material Li1.231Mn0.615Ni0.154O2. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 5436-5442	2.3	4
26	TiO2@Chlorella-Based Biomass Carbon Modified Separator for High-Rate LithiumBulfur Batteries. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2022 , 61, 1761-1772	3.9	4
25	Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in LithiumBulfur Batteries. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 20979-21000	3.9	4
24	Inhibition of the shuttle effect of lithium-sulfur batteries a tannic acid-metal one-step chemical film-forming modified separator. <i>Nanoscale</i> , 2021 , 13, 5058-5068	7.7	4

(2021-2021)

A compared investigation of different biogum polymer binders for silicon anode of lithium-ion batteries. <i>Ionics</i> , 2021 , 27, 1829-1836	2.7	4
Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag. <i>Journal of Alloys and Compounds</i> , 2021 , 876, 160125	5.7	4
Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries. <i>Journal of Materials Chemistry A</i> ,	13	3
Synergistic Effect of Microstructure Engineering and Local Crystal Structure Tuning to Improve the Cycling Stability of Ni-Rich Cathodes. <i>ACS Applied Materials & Discourse Cycling Stability of Ni-Rich Cathodes</i> . <i>ACS Applied Materials & Discourse Cycling Stability of Ni-Rich Cathodes</i> . <i>ACS Applied Materials & Discourse Cycling Stability of Ni-Rich Cathodes</i> . <i>ACS Applied Materials & Discourse Cycling Stability of Ni-Rich Cathodes</i> . <i>ACS Applied Materials & Discourse Cycling Stability of Ni-Rich Cathodes</i> . <i>ACS Applied Materials & Discourse Cycling Stability of Ni-Rich Cathodes</i> . <i>ACS Applied Materials & Discourse Cycling Stability of Ni-Rich Cathodes</i> .	9.5	3
Suppressing the Shuttling of Polysulfide by a Self-Assembled FeOOH Separator in Liß Batteries. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 21066-21076	3.9	3
Three-Dimensional SnS2 Nanoarrays with Enhanced Lithium-Ion Storage Properties. <i>ChemElectroChem</i> , 2020 , 7, 4484-4491	4.3	3
Key Parameter Optimization for the Continuous Synthesis of Ni-Rich Nito Al Cathode Materials for Lithium-Ion Batteries. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 22549-22558	3.9	3
A Ge/Carbon Atomic-Scale Hybrid Anode Material: A MicroNano Gradient Porous Structure with High Cycling Stability. <i>Angewandte Chemie</i> , 2021 , 133, 12647-12654	3.6	3
Synthesis of N-doped straw sheaflike porous MnO@C composite as anode of advanced lithium-/sodium-ion batteries. <i>Ionics</i> , 2021 , 27, 551-559	2.7	3
Synthesis and lithium-ion storage performances of LiFe0.5Co0.5PO4/C nanoplatelets and nanorods. <i>Ionics</i> , 2018 , 24, 2275-2285	2.7	3
In Operando Investigation of the Structural Evolution during Calcination and Corresponding Enhanced Performance of Three-Dimensional Na2Ti6O13@CN Hierarchical Microflowers. <i>Industrial & Diginal Propers amp; Engineering Chemistry Research</i> , 2018 , 57, 17430-17436	3.9	3
Facile In Situ Chemical Cross-Linking Gel Polymer Electrolyte, which Confines the Shuttle Effect with High Ionic Conductivity and Li-Ion Transference Number for Quasi-Solid-State Lithium-Sulfur Battery. <i>ACS Applied Materials & Interfaces</i> , 2021 , 13, 44497-44508	9.5	3
Unveiling the abnormal capacity rising mechanism of MoS anode during long-term cycling for sodium-ion batteries <i>RSC Advances</i> , 2021 , 11, 28488-28495	3.7	2
Revisit the Progress of Binders for a Silicon-Based Anode from the Perspective of Designed Binder Structure and Special Sized Silicon Nanoparticles. <i>Industrial & Engineering Chemistry Research</i> ,	3.9	2
New Insights into the Mechanism of Enhanced Performance of Li[NiCoMn]O with a Polyacrylic Acid-Modified Binder. <i>ACS Applied Materials & District Materials & Mate</i>	9.5	1
Solid Electrolyte Interphase Composition Regulation via Coating AlF3 for a High-Performance Hard Carbon Anode in Sodium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 8242-8251	6.1	1
A novel Si/TiSi2/G@C composite as anode material with excellent lithium storage performances. <i>Materials Letters</i> , 2021 , 299, 130078	3.3	1
A Simple GasBolid Treatment for Surface Modification of Li-Rich Oxides Cathodes. <i>Angewandte Chemie</i> , 2021 , 133, 23436	3.6	1
	Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag. Journal of Alloys and Compounds, 2021, 876, 160125 Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries. Journal of Materials Chemistry A. Synergistic Effect of Microstructure Engineering and Local Crystal Structure Tuning to Improve the Cycling Stability of Ni-Rich Cathodes. ACS Applied Materials & Amp; Interfaces, 2021, 13, 48720-48729 Suppressing the Shuttling of Polysulfide by a Self-Assembled FeOOH Separator in LiB Batteries. Industrial & Indu	Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag. Journal of Alloys and Compounds, 2021, 876, 160125 Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries. Journal of Materials Chemistry A, Synergistic Effect of Microstructure Engineering and Local Crystal Structure Tuning to Improve the Cycling Stability of Ni-Rich Cathodes. ACS Applied Materials & Ampy. Interfaces, 2021, 13, 48720-48729 Suppressing the Shuttling of Polysulfide by a Self-Assembled FeOOH Separator in LIB Batteries. Industrial & Ampy. Engineering Chemistry Research, 2020, 59, 21066-21076 Three-Dimensional SnS2 Nanoarrays with Enhanced Lithium-Ion Storage Properties. ChemElectroChem, 2020, 7, 4484-4491 Key Parameter Optimization for the Continuous Synthesis of Ni-Rich Nitloßi Cathode Materials for Lithium-Ion Batteries. Industrial & Ampy. Engineering Chemistry Research, 2020, 59, 22549-22558 A Ge/Carbon Atomic-Scale Hybrid Anode Material: A MicroBiano Gradient Porous Structure with High Cycling Stability. Angewandte Chemie, 2021, 133, 12647-12654 Synthesis of N-doped straw sheafflike porous MnO@C composite as anode of advanced lithium-Joodium-ion batteries. Ionics, 2021, 27, 551-559 Synthesis and lithium-ion storage performances of LiFe0.5Co0.5PO4/C nanoplatelets and nanorods. Ionics, 2018, 24, 2275-2285 In Operando Investigation of the Structural Evolution during Calcination and Corresponding Enhanced Performance of Three-Dimensional Na2Ti6013@CB Hierarchical Microflowers. Industrial & Applied Materials & Ampy. Interfaces, 2021, 13, 4497-4459 Lower Lower Structure and Special Sized Silicon Nanoparticles. Industrial & Ampy. Engineering Chemistry Research, 2018, 13, 4497-4459 Unveiling the abnormal capacity rising mechanism of MoS anode during long-term cycling for sodium-ion batteries. RSC Advances, 2021, 11, 28488-28495 Unveiling the abnormal capacity rising mechanism

5	Reaction Pathways by Low-Temperature Intermediates. <i>Industrial & amp; Engineering Chemistry</i> 3.9 <i>Research</i> , 2022 , 61, 453-463	1	
4	Synthesis and electrochemical performance of Li3V2(PO4)3/C by organic solvent replacement drying method. <i>Ionics</i> , 2018 , 24, 385-391	0	
3	Microstructure-Controlled Li-Rich Mn-Based Cathodes by a Gas-Solid Interface Reaction for Tackling the Continuous Activation of LiMnO. <i>ACS Applied Materials & Description of Limno and Examp and E</i>	0	
2	Understanding of the Irreversible Phase Transition and Zr-Doped Modification Strategy for a Nickel-Rich Cathode under a High Voltage. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 3651-3660	0	
1	An integrated cathode and solid electrolyte polymerization with significantly reduced interface resistance. <i>Chemical Communications</i> , 2021 , 57, 13004-13007		

New Insight into High-Rate Performance Lithium-Rich Cathode Synthesis through Controlling the