Bingfeng Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7360566/publications.pdf Version: 2024-02-01

RINGEENC SHI

#	Article	IF	CITATIONS
1	Transition metal-catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chemical Society Reviews, 2009, 38, 3242.	18.7	1,498
2	Ligand-Enabled Reactivity and Selectivity in a Synthetically Versatile Aryl C–H Olefination. Science, 2010, 327, 315-319.	6.0	694
3	Pd ^{II} â€Catalyzed Enantioselective Activation of C(sp ²)ï£;H and C(sp ³)ï£;H Bonds Using Monoprotected Amino Acids as Chiral Ligands. Angewandte Chemie - International Edition, 2008, 47, 4882-4886.	7.2	617
4	Pd(II)-Catalyzed Olefination of Electron-Deficient Arenes Using 2,6-Dialkylpyridine Ligands. Journal of the American Chemical Society, 2009, 131, 5072-5074.	6.6	512
5	Pd(II)-Catalyzed Enantioselective Câ^'H Olefination of Diphenylacetic Acids. Journal of the American Chemical Society, 2010, 132, 460-461.	6.6	427
6	Recent advances in the synthesis of axially chiral biaryls <i>via</i> transition metal-catalysed asymmetric C–H functionalization. Chemical Communications, 2019, 55, 8514-8523.	2.2	322
7	Stereoselective Synthesis of Chiral αâ€Aminoâ€Î²â€Lactams through Palladium(II)â€Catalyzed Sequential Monoarylation/Amidation of C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2013, 52, 13588-13592.	7.2	318
8	Atroposelective Synthesis of Axially Chiral Biaryls by Palladium atalyzed Asymmetric Câ^'H Olefination Enabled by a Transient Chiral Auxiliary. Angewandte Chemie - International Edition, 2017, 56, 6617-6621.	7.2	290
9	Pd(ii)-catalyzed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds using a removable directing group: efficient synthesis of alkyl ethers. Chemical Science, 2013, 4, 4187.	3.7	280
10	Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp ³)–H Bonds. Chemical Reviews, 2021, 121, 14957-15074.	23.0	262
11	Palladium(II)â€Catalyzed <i>ortho</i> Alkylation of Benzoic Acids with Alkyl Halides. Angewandte Chemie - International Edition, 2009, 48, 6097-6100.	7.2	255
12	Recent advances in copper-mediated chelation-assisted functionalization of unactivated C–H bonds. Organic Chemistry Frontiers, 2016, 3, 1028-1047.	2.3	230
13	Transition Metalâ€Catalyzed Enantioselective Câ^'H Functionalization via Chiral Transient Directing Group Strategies. Angewandte Chemie - International Edition, 2020, 59, 19773-19786.	7.2	223
14	Recent Advances on Ester Synthesis via Transition-Metal Catalyzed C–H Functionalization. ACS Catalysis, 2015, 5, 1863-1881.	5.5	210
15	Pd(ii)-catalyzed alkylation of unactivated C(sp3)–H bonds: efficient synthesis of optically active unnatural α-amino acids. Chemical Science, 2013, 4, 3906.	3.7	202
16	Catalytic alkylation of unactivated C(sp ³)–H bonds for C(sp ³)–C(sp ³) bond formation. Chemical Society Reviews, 2019, 48, 4921-4942.	18.7	196
17	Stereoselective Synthesis of Chiral β-Fluoro α-Amino Acids via Pd(II)-Catalyzed Fluorination of Unactivated Methylene C(sp ³)–H Bonds: Scope and Mechanistic Studies. Journal of the American Chemical Society, 2015, 137, 8219-8226.	6.6	183
18	Enantioselective Synthesis of Biaryl Atropisomers by Pd atalyzed Câ^'H Olefination using Chiral Spiro Phosphoric Acid Ligands. Angewandte Chemie - International Edition, 2019, 58, 6708-6712.	7.2	183

#	Article	IF	CITATIONS
19	Cobalt(III)-Catalyzed C2-Selective C–H Alkynylation of Indoles. Organic Letters, 2015, 17, 4094-4097.	2.4	177
20	Scalable, Stereocontrolled Formal Syntheses of (+)â€Isoschizandrin and (+)â€Steganone: Development and Applications of Palladium(II)â€Catalyzed Atroposelective Câ^'H Alkynylation. Angewandte Chemie - International Edition, 2018, 57, 3661-3665.	7.2	177
21	Enantioselective Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics by Pd-Catalyzed C–H Alkynylation. ACS Catalysis, 2019, 9, 1956-1961.	5.5	174
22	Site-Selective Alkenylation of δ-C(sp ³)–H Bonds with Alkynes via a Six-Membered Palladacycle. Journal of the American Chemical Society, 2016, 138, 10750-10753.	6.6	173
23	Cu(II)-Mediated C–S/N–S Bond Formation via C–H Activation: Access to Benzoisothiazolones Using Elemental Sulfur. Organic Letters, 2014, 16, 5644-5647.	2.4	169
24	Pdâ€Catalyzed Atroposelective Câ^'H Allylation through βâ€O Elimination: Diverse Synthesis of Axially Chiral Biaryls. Angewandte Chemie - International Edition, 2018, 57, 17151-17155.	7.2	163
25	Key Mechanistic Features of Enantioselective C–H Bond Activation Reactions Catalyzed by [(Chiral) Tj ETQq1 2012, 134, 1690-1698.	1 0.78431 6.6	14 rgBT /Over 159
26	Siteâ€Selective δâ€C(sp ³)â^'H Alkylation of Amino Acids and Peptides with Maleimides via a Sixâ€Membered Palladacycle. Angewandte Chemie - International Edition, 2018, 57, 5858-5862.	7.2	159
27	Cp*Co(III)/MPAA-Catalyzed Enantioselective Amidation of Ferrocenes Directed by Thioamides under Mild Conditions. Organic Letters, 2019, 21, 1895-1899.	2.4	154
28	Nickel-catalyzed thiolation of unactivated aryl C–H bonds: efficient access to diverse aryl sulfides. Chemical Communications, 2015, 51, 4069-4072.	2.2	150
29	Synthesis of Axially Chiral Styrenes through Pdâ€Catalyzed Asymmetric Câ^'H Olefination Enabled by an Amino Amide Transient Directing Group. Angewandte Chemie - International Edition, 2020, 59, 6576-6580.	7.2	135
30	Atroposelective Synthesis of Axially Chiral Styrenes via an Asymmetric C–H Functionalization Strategy. CheM, 2020, 6, 497-511.	5.8	133
31	Sulfonamideâ€Promoted Palladium(II)â€Catalyzed Alkylation of Unactivated Methylene C(sp ³)H Bonds with Alkyl Iodides. Angewandte Chemie - International Edition, 2014, 53, 11950-11954.	7.2	131
32	Nickel-catalyzed direct thiolation of unactivated C(sp ³)–H bonds with disulfides. Chemical Communications, 2015, 51, 7341-7344.	2.2	131
33	From Reactivity and Regioselectivity to Stereoselectivity: An Odyssey of Designing PIP Amine and Related Directing Groups for C—H Activation. Chinese Journal of Chemistry, 2019, 37, 647-656.	2.6	126
34	Divergent and Stereoselective Synthesis of βâ€5ilylâ€Î±â€Amino Acids through Palladiumâ€Catalyzed Intermolecular Silylation of Unactivated Primary and Secondary Câ^'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 13859-13862.	7.2	125
35	Indole Synthesis via Cobalt(III)-Catalyzed Oxidative Coupling of N-Arylureas and Internal Alkynes. Organic Letters, 2016, 18, 1776-1779.	2.4	124
36	Synthesis of Chiral Aldehyde Catalysts by Pdâ€Catalyzed Atroposelective Câ^'H Naphthylation. Angewandte Chemie - International Edition, 2019, 58, 11464-11468.	7.2	122

#	Article	IF	CITATIONS
37	Copper-Mediated Hydroxylation of Arenes and Heteroarenes Directed by a Removable Bidentate Auxiliary. Organic Letters, 2014, 16, 3904-3907.	2.4	120
38	Palladium(II) atalyzed Enantioselective Arylation of Unbiased Methylene C(sp ³)â^'H Bonds Enabled by a 2â€Pyridinylisopropyl Auxiliary and Chiral Phosphoric Acids. Angewandte Chemie - International Edition, 2018, 57, 9093-9097.	7.2	116
39	Synthesis of Axially Chiral Biarylâ€2â€amines by Pd ^{II} â€Catalyzed Freeâ€Amineâ€Directed Atroposelective Câ~'H Olefination. Angewandte Chemie - International Edition, 2020, 59, 3568-3572.	7.2	114
40	Copper(II)-Catalyzed Direct Sulfonylation of C(sp ²)–H Bonds with Sodium Sulfinates. Organic Letters, 2015, 17, 2784-2787.	2.4	113
41	Pd(II)-Catalyzed Enantioselective Alkynylation of Unbiased Methylene C(sp ³)–H Bonds Using 3,3′-Fluorinated-BINOL as a Chiral Ligand. Journal of the American Chemical Society, 2019, 141, 4558-4563.	6.6	109
42	2-(Pyridin-2-yl)isopropyl (PIP) Amine: An Enabling Directing Group for Divergent and Asymmetric Functionalization of Unactivated Methylene C(sp ³)–H Bonds. Accounts of Chemical Research, 2021, 54, 2750-2763.	7.6	109
43	Synthesis of amino acids and peptides with bulky side chains <i>via</i> ligand-enabled carboxylate-directed γ-C(sp ³)–H arylation. Chemical Science, 2020, 11, 290-294.	3.7	107
44	A sustainable and simple catalytic system for direct alkynylation of C(sp ²)–H bonds with low nickel loadings. Chemical Communications, 2015, 51, 6388-6391.	2.2	106
45	Efficient Synthesis of Sulfur-Stereogenic Sulfoximines via Ru(II)-Catalyzed Enantioselective C–H Functionalization Enabled by Chiral Carboxylic Acid. Journal of the American Chemical Society, 2021, 143, 6810-6816.	6.6	106
46	Pd(II)-Catalyzed Direct Sulfonylation of Unactivated C(sp ³)–H Bonds with Sodium Sulfinates. Organic Letters, 2015, 17, 3552-3555.	2.4	105
47	Stereoselective construction of atropisomers featuring a C–N chiral axis. Green Synthesis and Catalysis, 2022, 3, 117-136.	3.7	104
48	Rhodium(III)-Catalyzed Oxidative Olefination of Pyridines and Quinolines: Multigram-Scale Synthesis of Naphthyridinones. Organic Letters, 2013, 15, 3460-3463.	2.4	97
49	Atroposelective Synthesis of Conjugated Diene-Based Axially Chiral Styrenes via Pd(II)-Catalyzed Thioether-Directed Alkenyl C–H Olefination. Journal of the American Chemical Society, 2021, 143, 12335-12344.	6.6	97
50	Enantioselective Synthesis of Atropisomeric Anilides via Pd(II)-Catalyzed Asymmetric C–H Olefination. Journal of the American Chemical Society, 2020, 142, 18266-18276.	6.6	96
51	Atroposelective Synthesis of Axially Chiral Biaryls by Palladium atalyzed Asymmetric Câ^'H Olefination Enabled by a Transient Chiral Auxiliary. Angewandte Chemie, 2017, 129, 6717-6721.	1.6	93
52	Copper/Silverâ€Mediated Direct <i>ortho</i> â€Ethynylation of Unactivated (Hetero)aryl CH Bonds with Terminal Alkyne. Chemistry - A European Journal, 2015, 21, 205-209.	1.7	91
53	Forging Câ^'heteroatom bonds by transition-metal-catalyzed enantioselective C–H functionalization. CheM, 2022, 8, 384-413.	5.8	91
54	Ni(<scp>ii</scp>)-catalyzed dehydrative alkynylation of unactivated (hetero)aryl C–H bonds using oxygen: a user-friendly approach. Chemical Communications, 2015, 51, 11650-11653.	2.2	90

#	Article	IF	CITATIONS
55	Pd(<scp>ii</scp>)-Catalyzed arylation of unactivated methylene C(sp ³)–H bonds with aryl halides using a removable auxiliary. Chemical Communications, 2014, 50, 8353-8355.	2.2	85
56	Copper-catalyzed ortho-halogenation of arenes and heteroarenes directed by a removable auxiliary. Chemical Communications, 2015, 51, 5093-5096.	2.2	84
57	A general and practical palladium-catalyzed monoarylation of β-methyl C(sp3)–H of alanine. Chemical Communications, 2014, 50, 13924-13927.	2.2	78
58	Palladium-Catalyzed Oxidative Olefination of Phenols Bearing Removable Directing Groups under Molecular Oxygen. Journal of Organic Chemistry, 2014, 79, 1521-1526.	1.7	78
59	Ni(ii)/BINOL-catalyzed alkenylation of unactivated C(sp3)–H bonds. Chemical Communications, 2015, 51, 7899-7902.	2.2	78
60	Transition-metal-catalyzed etherification of unactivated C H bonds. Tetrahedron Letters, 2015, 56, 15-22.	0.7	78
61	Ru-Catalyzed <i>Meta</i> -C–H Benzylation of Arenes with Toluene Derivatives. Organic Letters, 2017, 19, 3950-3953.	2.4	78
62	Photocatalyst-, metal- and additive-free, direct C–H arylation of quinoxalin-2(1 <i>H</i>)-ones with aryl acyl peroxides induced by visible light. Organic Chemistry Frontiers, 2020, 7, 4031-4042.	2.3	76
63	Achiral Cp ^x Ir(III)/Chiral Carboxylic Acid Catalyzed Enantioselective C–H Amidation of Ferrocenes under Mild Conditions. ACS Catalysis, 2020, 10, 7117-7122.	5.5	76
64	Site-selective functionalization of remote aliphatic C–H bonds <i>via</i> C–H metallation. Chemical Science, 2021, 12, 841-852.	3.7	75
65	Nickel-catalyzed ortho-halogenation of unactivated (hetero)aryl C–H bonds with lithium halides using a removable auxiliary. Chemical Communications, 2016, 52, 4934-4937.	2.2	74
66	Divergent Synthesis of Silicon-Containing Peptides via Pd-Catalyzed Post-Assembly γ-C(sp ³)–H Silylation. ACS Catalysis, 2019, 9, 3298-3303.	5.5	74
67	Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C–H Activation. Journal of the American Chemical Society, 2021, 143, 19112-19120.	6.6	73
68	Catalyst-Controlled Amino- versus Oxy-Acetoxylation of Urea-Tethered Alkenes: Efficient Synthesis of Cyclic Ureas and Isoureas. Organic Letters, 2015, 17, 3758-3761.	2.4	71
69	Copper-/Silver-Mediated Arylation of C(sp ²)–H Bonds with 2-Thiophenecarboxylic Acids. Organic Letters, 2015, 17, 3338-3341.	2.4	70
70	Late-stage functionalization of peptides <i>via</i> a palladium-catalyzed C(sp ³)–H activation strategy. Chemical Communications, 2020, 56, 13950-13958.	2.2	70
71	Copper-catalyzed oxidative C–H/C–H cross-coupling of benzamides and thiophenes. Chemical Communications, 2015, 51, 12823-12826.	2.2	66
72	Stereoselective alkoxycarbonylation of unactivated C(sp3)–H bonds with alkyl chloroformates via Pd(II)/Pd(IV) catalysis. Nature Communications, 2016, 7, 12901.	5.8	66

#	Article	IF	CITATIONS
73	Cobalt(III) atalyzed Alkylation of Primary C(<i>sp</i> ³)–H Bonds with Diazo Compounds. Advanced Synthesis and Catalysis, 2017, 359, 2912-2917.	2.1	64
74	Synthesis of Chiral Î²â€Łactams by Pd atalyzed Enantioselective Amidation of Methylene C(sp ³)–H Bonds. Chinese Journal of Chemistry, 2020, 38, 242-246.	2.6	64
75	Nickel-Catalyzed <i>Ortho-</i> Arylation of Unactivated (Hetero)aryl C–H Bonds with Arylsilanes Using a Removable Auxiliary. Organic Letters, 2016, 18, 4586-4589.	2.4	63
76	Scalable, Stereocontrolled Formal Syntheses of (+)â€ksoschizandrin and (+)â€6teganone: Development and Applications of Palladium(II)â€Catalyzed Atroposelective Câ^'H Alkynylation. Angewandte Chemie, 2018, 130, 3723-3727.	1.6	62
77	Synthesis of Bicyclo[<i>n</i> .1.0]alkanes by a Cobaltâ€Catalyzed Multiple C(sp ³)â^'H Activation Strategy. Angewandte Chemie - International Edition, 2017, 56, 13145-13149.	7.2	60
78	Palladiumâ€Catalyzed Arylation of Unactivated γâ€Methylene C(sp ³)H and δâ€CH Bonds with Oxazolineâ€Carboxylate Auxiliary. Chemistry - A European Journal, 2015, 21, 17503-17507.	1 an 1.7	59
79	<scp>Niâ€Catalyzed Chelationâ€Assisted</scp> Direct Functionalization of Inert C—H Bonds. Chinese Journal of Chemistry, 2020, 38, 635-662.	2.6	59
80	Enantioselective Synthesis of Biaryl Atropisomers by Pd atalyzed Câ^'H Olefination using Chiral Spiro Phosphoric Acid Ligands. Angewandte Chemie, 2019, 131, 6780-6784.	1.6	58
81	Pdâ€Catalyzed Atroposelective Câ^'H Allylation through βâ€O Elimination: Diverse Synthesis of Axially Chiral Biaryls. Angewandte Chemie, 2018, 130, 17397-17401.	1.6	57
82	Transition-Metal-Catalyzed Arylation of Unactivated C(sp3)—H Bonds Assisted by Bidentate Directing Groups. Chinese Journal of Organic Chemistry, 2014, 34, 1487.	0.6	57
83	Enantioselective Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics. Chinese Journal of Organic Chemistry, 2019, 39, 1522.	0.6	57
84	Rhodium(III)â€Catalyzed Oxidative Olefination of Picolinamides: Convenient Synthesis of 3â€Alkenylpicolinamides. Advanced Synthesis and Catalysis, 2014, 356, 1038-1046.	2.1	56
85	Asymmetric Total Synthesis of TAN-1085 Facilitated by Pd-Catalyzed Atroposelective C–H Olefination. Organic Letters, 2019, 21, 3352-3356.	2.4	56
86	Cobalt/Salox atalyzed Enantioselective Câ^'H Functionalization of Arylphosphinamides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	56
87	23-Oxa-Analogues of OSW-1: Efficient Synthesis and Extremely Potent Antitumor Activity. Angewandte Chemie - International Edition, 2004, 43, 4324-4327.	7.2	55
88	Palladium-catalyzed enantioselective C–H functionalization via C–H palladation. Trends in Chemistry, 2022, 4, 220-235.	4.4	55
89	OSW Saponins:Â Facile Synthesis toward a New Type of Structures with Potent Antitumor Activities. Journal of Organic Chemistry, 2005, 70, 10354-10367.	1.7	54
90	Expeditious synthesis of pyrano[2,3,4-de]quinolines via Rh(<scp>iii</scp>)-catalyzed cascade C–H activation/annulation/lactonization of quinolin-4-ol with alkynes. Chemical Communications, 2017, 53, 7824-7827.	2.2	54

#	Article	IF	CITATIONS
91	Practical Synthesis of <i>anti</i> â€Î²â€Hydroxyâ€Î±â€Amino Acids by Pd ^{II} â€Catalyzed Sequential C(sp ³)H Functionalization. Chemistry - A European Journal, 2015, 21, 3264-3270.	1.7	53
92	Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes. Sensors, 2017, 17, 982.	2.1	53
93	Copper(<scp>ii</scp>)-catalyzed methoxylation of unactivated (hetero)aryl C–H bonds using a removable bidentate auxiliary. Organic Chemistry Frontiers, 2015, 2, 119-123.	2.3	52
94	Synthesis of Chiral Spirolactams via Sequential Câ^'H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co ^{II} /Chiral Spiro Phosphoric Acid Binary System. Angewandte Chemie - International Edition, 2021, 60, 23187-23192.	7.2	51
95	Amide-Directed Cobalt(III)-Catalyzed C–H Amidation of Ferrocenes. Organic Letters, 2019, 21, 951-954.	2.4	50
96	Pd(II)â€Catalyzed Tandem Enantioselective Methylene C(sp ³)â^'H Alkenylation–Azaâ€Wacker Cyclization to Access βâ€Stereogenic γâ€Lactams. Angewandte Chemie - International Edition, 2020, 59, 14060-14064.	7.2	50
97	Synthesis of Sterically Congested Polycyclic Aromatic Hydrocarbons: Rhodium(III)â€Catalyzed Cascade Oxidative Annulation of Aryl Ketoximes with Diphenylacetylene by Sequential Cleavage of Multiple CH Bonds. Advanced Synthesis and Catalysis, 2014, 356, 2688-2696.	2.1	46
98	Synthesis of Bicyclo[<i>n</i> .1.0]alkanes by a Cobaltâ€Catalyzed Multiple C(sp ³)â^'H Activation Strategy. Angewandte Chemie, 2017, 129, 13325-13329.	1.6	46
99	Siteâ€Selective δâ€C(sp ³)â^'H Alkylation of Amino Acids and Peptides with Maleimides via a Sixâ€Membered Palladacycle. Angewandte Chemie, 2018, 130, 5960-5964.	1.6	46
100	Pd-Catalyzed Atroposelective C–H Allylation and Alkenylation: Access to Enantioenriched Atropisomers Featuring Pentatomic Heteroaromatics. Organometallics, 2019, 38, 4022-4028.	1.1	45
101	Atroposelective synthesis of <i>N</i> -aryl peptoid atropisomers <i>via</i> a palladium(<scp>ii</scp>)-catalyzed asymmetric C–H alkynylation strategy. Chemical Science, 2021, 12, 9391-9397.	3.7	45
102	Pd(ii)-catalyzed oxidative alkoxycarbonylation of 2-phenoxypyridine derivatives with CO and alcohols. Organic and Biomolecular Chemistry, 2014, 12, 2538.	1.5	43
103	Nickel-catalyzed direct C–H trifluoroethylation of heteroarenes with trifluoroethyl iodide. Chemical Communications, 2017, 53, 10287-10290.	2.2	43
104	Palladium-catalyzed sequential monoarylation/amidation of C(sp ³)–H bonds: stereoselective synthesis of α-amino-β-lactams and anti-α,β-diamino acid. Chemical Communications, 2017, 53, 6351-6354.	2.2	40
105	Merging C–H and C–C Activation in Pd(II)-Catalyzed Enantioselective Synthesis of Axially Chiral Biaryls. CCS Chemistry, 2021, 3, 455-465.	4.6	40
106	Palladium(0)-catalyzed cyclopropanation of benzyl bromides via C(sp ³)–H bond activation. Chemical Communications, 2014, 50, 3692-3694.	2.2	39
107	Palladium(II) atalyzed Enantioselective Arylation of Unbiased Methylene C(sp ³)â^'H Bonds Enabled by a 2â€Pyridinylisopropyl Auxiliary and Chiral Phosphoric Acids. Angewandte Chemie, 2018, 130, 9231-9235.	1.6	38
108	Recent Progress in the Synthesis of Functionalized β-Lactams through Transition-Metal-Catalyzed C(sp3)–H Amidation. Synlett, 2014, 25, 1941-1945.	1.0	37

#	Article	IF	CITATIONS
109	Palladium-catalyzed interannular meta-C–H arylation. Chemical Communications, 2017, 53, 2166-2169.	2.2	37
110	Transition Metal atalyzed Enantioselective Câ^'H Functionalization via Chiral Transient Directing Group Strategies. Angewandte Chemie, 2020, 132, 19941-19954.	1.6	37
111	Divergent and Stereoselective Synthesis of βâ€Silylâ€Ĵ±â€Amino Acids through Palladiumâ€Catalyzed Intermolecular Silylation of Unactivated Primary and Secondary Câ^'H Bonds. Angewandte Chemie, 2016, 128, 14063-14066.	1.6	36
112	Copperâ€Mediated Thiolation of Unactivated Heteroaryl Câ^'H Bonds with Disulfides under Ligand―and Metalâ€Oxidantâ€Free Conditions. Advanced Synthesis and Catalysis, 2017, 359, 4117-4121.	2.1	36
113	Synthesis of Chiral Aldehyde Catalysts by Pdâ€Catalyzed Atroposelective Câ^'H Naphthylation. Angewandte Chemie, 2019, 131, 11586-11590.	1.6	36
114	Synthesis of Axially Chiral Styrenes through Pd atalyzed Asymmetric Câ^'H Olefination Enabled by an Amino Amide Transient Directing Group. Angewandte Chemie, 2020, 132, 6638-6642.	1.6	36
115	Rh(<scp>iii</scp>)-catalyzed regioselective hydroarylation of alkynes via directed C–H functionalization of pyridines. Organic and Biomolecular Chemistry, 2014, 12, 3594-3597.	1.5	35
116	Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. ACS Catalysis, 2022, 12, 9359-9396.	5.5	35
117	Palladium-Catalyzed Directed Atroposelective C–H Allylation via β-H Elimination: 1,1-Disubstituted Alkenes as Allyl Surrogates. Organic Letters, 2020, 22, 9693-9698.	2.4	34
118	Transition Metal-Catalyzed C-H Activation via Imine-Based Transient Directing Group Strategy. Chinese Journal of Organic Chemistry, 2020, 40, 3517.	0.6	33
119	Experimental and Computational Studies on the Directing Ability of Chalcogenoethers in Palladium atalyzed Atroposelective CⰒH Olefination and Allylation. Angewandte Chemie - International Edition, 2022, 61, e202115221.	7.2	33
120	Remote γ-C(sp ³)–H Alkylation of Aliphatic Carboxamides via an Unexpected Regiodetermining Pd Migration Process: Reaction Development and Mechanistic Study. ACS Catalysis, 2020, 10, 8212-8222.	5.5	32
121	Noncovalent Interaction in Transition Metal-Catalyzed Selective C-H Activation. Acta Chimica Sinica, 2020, 78, 289.	0.5	32
122	Integrated Gas Sensing System of SWCNT and Cellulose Polymer Concentrator for Benzene, Toluene, and Xylenes. Sensors, 2016, 16, 183.	2.1	31
123	Towards a Perylene-Containing Nanohoop. Synlett, 2013, 24, 2545-2549.	1.0	30
124	Nickel(<scp>ii</scp>)-catalyzed direct arylation of aryl C–H bonds with aryl-boron reagents directed by a removable bidentate auxiliary. Organic Chemistry Frontiers, 2016, 3, 897-900.	2.3	30
125	Synthesis of Axially Chiral Biarylâ€2â€amines by Pd ^{II} â€Catalyzed Freeâ€Amineâ€Directed Atroposelective Câ^'H Olefination. Angewandte Chemie, 2020, 132, 3596-3600.	1.6	30
126	Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Organic Chemistry Frontiers, 2022, 9, 1458-1484.	2.3	30

#	Article	IF	CITATIONS
127	Recent Advances on Transition-Metal-Catalyzed Halogenation of Unactivated C-H Bonds. Acta Chimica Sinica, 2015, 73, 1283.	0.5	29
128	Four new dimeric triterpene glucosides from Sanguisorba officinalis. Tetrahedron, 2004, 60, 11647-11654.	1.0	28
129	Pd(II)-Catalyzed Enantioselective Intramolecular Arylation of Unbiased C(sp3)–H Bonds to Construct Chiral Benzo-ring Compounds. Organic Letters, 2021, 23, 97-101.	2.4	26
130	Efficient Synthesis of Isoquinolines via Rh(III)-Catalyzed Oxidative AnnuÂłation of Picolinamides with Alkynes. Synlett, 2014, 25, 1036-1040.	1.0	25
131	Synthesis of chiral α-hydroxy acids via palladium-catalyzed C(sp ³)–H alkylation of lactic acid. Chemical Communications, 2016, 52, 1915-1918.	2.2	23
132	Thioamide-Directed Cp*Co(III)-Catalyzed C–H Allylation of Ferrocenes. Organic Letters, 2021, 23, 2626-2631.	2.4	23
133	Asymmetric Synthesis of γ-Lactams Containing α,β-Contiguous Stereocenters via Pd(II)-Catalyzed Cascade Methylene C(sp ³)–H Alkenylation/Aza-Wacker Cyclization. Organic Letters, 2021, 23, 2048-2051.	2.4	23
134	Rhodium(III) atalyzed C—H Vinylation of Arenes: Access to Functionalized Styrenes. Chinese Journal of Chemistry, 2018, 36, 1143-1146.	2.6	22
135	Synthesis of Acyclic Aliphatic Amides with Contiguous Stereogenic Centers via Palladiumâ€Catalyzed Enantioâ€; Chemo―and Diastereoselective Methylene C(sp ³)â^'H arylation. Angewandte Chemie - International Edition, 2020, 59, 20455-20458.	7.2	22
136	Construction of a New Class of Oxindole-Based Axially Chiral Styrenes via Kinetic Resolution. Chinese Journal of Organic Chemistry, 2020, 40, 4364.	0.6	22
137	Ir(III)-Catalyzed Asymmetric C–H Activation/Annulation of Sulfoximines Assisted by the Hydrogen-Bonding Interaction. ACS Catalysis, 2022, 12, 9083-9091.	5.5	22
138	Copper-catalyzed direct acyloxylation of C(sp2)-H bonds with Benzoic acids. Science China Chemistry, 2015, 58, 1302-1309.	4.2	21
139	C–N atropopure compounds: New directions. Chem Catalysis, 2021, 1, 483-485.	2.9	21
140	Synthesis of Oxazolines from Amides via Palladium-Catalyzed Functionalization of Unactivated C(sp3)–H Bond. Organic Letters, 2015, 17, 1200-1203.	2.4	20
141	Synthesis of phthalic acid derivatives <i>via</i> Pd-catalyzed alkoxycarbonylation of aromatic C–H bonds with alkyl chloroformates. Chemical Communications, 2018, 54, 10859-10862.	2.2	20
142	Palladium-Catalyzed C(sp ³)–H Nitrooxylation with <i>tert</i> Butyl Nitrite and Molecular Oxygen. Organic Letters, 2020, 22, 9719-9723.	2.4	19
143	The Breadth and Depth of C–H Functionalization. Journal of Organic Chemistry, 2019, 84, 12701-12704.	1.7	18
144	Recent progress on nickel-catalyzed direct functionalization of unactivated C-H bonds. Chinese Science Bulletin, 2015, 60, 2907-2917.	0.4	18

#	Article	IF	CITATIONS
145	Palladium-catalyzed C(sp ³)–H arylation of lactic acid: efficient synthesis of chiral β-aryl-α-hydroxy acids. Organic Chemistry Frontiers, 2016, 3, 204-208.	2.3	17
146	Tracking the Progress and Mechanism Study of a Solvothermal in Situ Domino N-Alkylation Reaction of Triethylamine and Ammonia Assisted by Ferrous Sulfate. Inorganic Chemistry, 2017, 56, 10123-10126.	1.9	17
147	<scp>Copperâ€Catalyzed</scp> Modular Access to <scp><i>N</i>â€Fused</scp> Polycyclic Indoles and <scp>5â€Aroyl</scp> â€pyrrolâ€2â€ones <i>via</i> Intramolecular N—H/C—H Annulation with Alkynes: Scope and Mechanism Probes. Chinese Journal of Chemistry, 2020, 38, 1545-1552.	2.6	17
148	Palladium-catalyzed ortho-C-H silylation of biaryl aldehydes using a transient directing group. Science China Chemistry, 2020, 63, 875-880.	4.2	17
149	Synthesis of tryptophan-containing 2,5-diketopiperazines <i>via</i> sequential C–H activation: total syntheses of tryprostatin A, maremycins A and B. Chemical Science, 2021, 12, 13137-13143.	3.7	17
150	Synthesis of P- and S-Stereogenic Compounds via Enantioselective C–H Functionalization. Synthesis, 2022, 54, 4784-4794.	1.2	17
151	Pd(II)â€Catalyzed Tandem Enantioselective Methylene C(sp 3)â^H Alkenylation–Azaâ€Wacker Cyclization to Access βâ€Stereogenic γâ€Lactams. Angewandte Chemie, 2020, 132, 14164-14168.	1.6	16
152	Efficient Synthesis of Carboxylic Esters via Palladium(II)-Catalyzed Direct Alkoxycarbonylation of Arenes with CO and Alcohols. Synlett, 2013, 24, 2274-2278.	1.0	15
153	Scalable Formal Synthesis of (â^')-Quinocarcin. Organic Letters, 2019, 21, 4609-4613.	2.4	14
154	Pd(<scp>ii</scp>)-Catalyzed enantioselective arylation of unbiased methylene C(sp ³)–H bonds enabled by a 3,3′-F ₂ -BINOL ligand. Chemical Communications, 2021, 57, 5562-5565.	2.2	14
155	Synthesis of Chiral Spirolactams via Sequential Câ [^] 'H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co II /Chiral Spiro Phosphoric Acid Binary System. Angewandte Chemie, 2021, 133, 23371.	1.6	14
156	Recent Advances in Base Metal (Copper, Cobalt and Nickel)-Catalyzed Directed C—H Amination. Chinese Journal of Organic Chemistry, 2021, 41, 3753.	0.6	14
157	γ-Lactone Synthesis via Palladium(II)-Catalyzed Lactonization of Unactivated Methylene C(sp3)–H Bonds. Synlett, 2016, 27, 2396-2400.	1.0	13
158	Pd(II)-Catalyzed Atroposelective C–H Allylation: Synthesis of Enantioenriched <i>N</i> -Aryl Peptoid Atropisomers. Organic Letters, 2022, 24, 304-308.	2.4	13
159	Recent advances in the synthesis of ferrocene derivatives <i>via</i> 3d transition metal-catalyzed C–H functionalization. Organic and Biomolecular Chemistry, 2022, 20, 4061-4073.	1.5	13
160	Copper atalyzed Câ^'H Ethoxycarbonyldifluoromethylation of Indoles and Pyrroles. Asian Journal of Organic Chemistry, 2018, 7, 1319-1322.	1.3	11
161	Pd(ii)-Catalyzed asymmetric intramolecular arylation of unbiased methylene C(sp3)–H bonds using readily accessible 3,3′-F2-BINOL as a chiral ligand. Organic Chemistry Frontiers, 2021, 8, 2903-2908.	2.3	10
162	Macrocyclic peptide construction through C–H activation strategy. Science Bulletin, 2018, 63, 1238-1240.	4.3	9

#	Article	IF	CITATIONS
163	Cobalt/Salox atalyzed Enantioselective C–H Functionalization of Arylphosphinamides. Angewandte Chemie, 0, , .	1.6	9
164	Differentially Substituted Phenylene-Containing Oligoacene Derivatives. Synlett, 2017, 28, 323-326.	1.0	8
165	Asymmetric formal synthesis of (â^')-tetrazomine. Organic Chemistry Frontiers, 2021, 8, 1802-1807.	2.3	8
166	Perfect control of C–N atropisomeric axis for creating high-added-value compounds. Chem Catalysis, 2021, 1, 485-487.	2.9	7
167	Experimental and Computational Studies on the Directing Ability of Chalcogenoethers in Palladiumâ€Catalyzed Atroposelective Câ^'H Olefination and Allylation. Angewandte Chemie, 2022, 134, e202115221.	1.6	7
168	Homoconjugated and Spiro Push–Pull Systems: Cycloadditions of Naphtho- and Anthradiquinones with Electron-Rich Alkynes. Synlett, 2017, 28, 1427-1431.	1.0	6
169	Iptycene-Containing Azaacenes with Tunable Luminescence. Synlett, 2017, 28, 2783-2789.	1.0	6
170	Unexpected Stability of CO-Coordinated Palladacycle in Bidentate Auxiliary Directed C(sp ³)–H Bond Activation: A Combined Experimental and Computational Study. Organometallics, 2019, 38, 2022-2030.	1.1	6
171	Rh(III)-Catalyzed Asymmetric [3+2] Annulative Construction of Axially and Centrally Chiral Indenes. Chinese Journal of Organic Chemistry, 2021, 41, 4088.	0.6	4
172	Quantum-dot-photocatalyzed production of allylic C–C products with hydrogen evolution. CheM, 2021, 7, 1405-1406.	5.8	4
173	Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines. Beilstein Journal of Organic Chemistry, 2021, 17, 2488-2495.	1.3	4
174	Synthesis of Chiral Sulfoxides via Pd(II)-Catalyzed Enantioselective C–H Alkynylation/Kinetic Resolution of 2-(Arylsulfinyl)pyridines. Organic Letters, 2021, 23, 7910-7915.	2.4	4
175	Cp*Rh(<scp>iii</scp>)-catalyzed and solvent-controlled tunable [4 + 1]/[4 + 3] annulation for the divergent assembly of dihydrobenzo[<i>cd</i>]indoles and dihydronaphtho[1,8- <i>bc</i>]azepines. Organic Chemistry Frontiers, 2022, 9, 3262-3267.	2.3	4
176	Cover Picture: Pdll-Catalyzed Enantioselective Activation of C(sp2)H and C(sp3)H Bonds Using Monoprotected Amino Acids as Chiral Ligands (Angew. Chem. Int. Ed. 26/2008). Angewandte Chemie - International Edition, 2008, 47, 4761-4761.	7.2	3
177	Redox Switchable Thianthrene Cavitands. Synthesis, 2016, 49, 358-364.	1.2	3
178	Palladium-Catalyzed Directed Arylation of Unactivated C(sp 3) H Bonds. , 2017, , 167-203.		3
179	Editorial for the Special Issue on Functional Organic Materials. Journal of Organic Chemistry, 2020, 85, 1-3.	1.7	3
180	Visible-Light-Promoted Histidine-Specific Peptide C-H Alkylation. Chinese Journal of Organic Chemistry, 2019, 39, 3602.	0.6	3

#	Article	IF	CITATIONS
181	Synthesis and Optoelectronic Properties of Iptycene–Naphthazarin Dyes. Synlett, 2019, 30, 54-58.	1.0	2
182	Formal total synthesis of (±)-7-deoxycylindrospermopsin and its 8- <i>epi</i> isomer. Organic Chemistry Frontiers, 2021, 8, 3360-3365.	2.3	2
183	Cobalt-Catalyzed Oxidative [4+2] Annulation of Benzamides with Dihydrofuran: A Facile Route to Tetrahydrofuro[2,3-c]isoquinolinones. Synthesis, 2021, 53, 3290-3298.	1.2	2
184	Inside Cover: From Reactivity and Regioselectivity to Stereoselectivity: An Odyssey of Designing PIP Amine and Related Directing Groups for C—H Activation (Chin. J. Chem. 7/2019). Chinese Journal of Chemistry, 2019, 37, 638-638.	2.6	0
185	Innentitelbild: Enantioselective Synthesis of Biaryl Atropisomers by Pd atalyzed Câ^'H Olefination using Chiral Spiro Phosphoric Acid Ligands (Angew. Chem. 20/2019). Angewandte Chemie, 2019, 131, 6526-6526.	1.6	0
186	Rücktitelbild: Pd(II)â€Catalyzed Tandem Enantioselective Methylene C(sp ³)â^'H Alkenylation–Azaâ€Wacker Cyclization to Access βâ€Stereogenic γâ€Lactams (Angew. Chem. 33/2020). Angewandte Chemie, 2020, 132, 14268-14268.	1.6	0
187	Synthesis of Acyclic Aliphatic Amides with Contiguous Stereogenic Centers via Palladiumâ€Catalyzed Enantioâ€, Chemo†and Diastereoselective Methylene C(sp ³)â^'H arylation. Angewandte Chemie, 2020, 132, 20635-20638.	1.6	0