Patricia C Babbitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7360547/publications.pdf Version: 2024-02-01

		34016	28224
121	11,971	52	105
papers	citations	h-index	g-index
129	129	129	15561
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Research, 2017, 45, D190-D199.	6.5	1,358
2	InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 2019, 47, D351-D360.	6.5	1,291
3	A large-scale evaluation of computational protein function prediction. Nature Methods, 2013, 10, 221-227.	9.0	789
4	Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies. PLoS Computational Biology, 2009, 5, e1000605.	1.5	587
5	Divergent Evolution of Enzymatic Function: Mechanistically Diverse Superfamilies and Functionally Distinct Suprafamilies. Annual Review of Biochemistry, 2001, 70, 209-246.	5.0	502
6	Using Sequence Similarity Networks for Visualization of Relationships Across Diverse Protein Superfamilies. PLoS ONE, 2009, 4, e4345.	1.1	385
7	The Enolase Superfamily: A General Strategy for Enzyme-Catalyzed Abstraction of the α-Protons of Carboxylic Acidsâ€. Biochemistry, 1996, 35, 16489-16501.	1.2	331
8	An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biology, 2016, 17, 184.	3.8	308
9	The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 2019, 20, 244.	3.8	261
10	Understanding Enzyme Superfamilies. Journal of Biological Chemistry, 1997, 272, 30591-30594.	1.6	253
11	BayGenomics: a resource of insertional mutations in mouse embryonic stem cells. Nucleic Acids Research, 2003, 31, 278-281.	6.5	220
12	The Structure–Function Linkage Database. Nucleic Acids Research, 2014, 42, D521-D530.	6.5	210
13	Evolution of enzyme superfamilies. Current Opinion in Chemical Biology, 2006, 10, 492-497.	2.8	209
14	Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Archives of Biochemistry and Biophysics, 2005, 433, 59-70.	1.4	194
15	Evolutionary Potential of (β/α)8-Barrels: Functional Promiscuity Produced by Single Substitutions in the Enolase Superfamilyâ€. Biochemistry, 2003, 42, 8387-8393.	1.2	171
16	The Enzyme Function Initiative. Biochemistry, 2011, 50, 9950-9962.	1.2	169
17	Leveraging Enzyme Structureâ^'Function Relationships for Functional Inference and Experimental Design:  The Structureâ^'Function Linkage Database. Biochemistry, 2006, 45, 2545-2555.	1.2	157
18	Divergence of Function in the Thioredoxin Fold Suprafamily:Â Evidence for Evolution of Peroxiredoxins from a Thioredoxin-like Ancestorâ€. Biochemistry, 2004, 43, 13981-13995.	1.2	141

#	Article	IF	CITATIONS
19	Can sequence determine function?. Genome Biology, 2000, 1, reviews0005.1.	13.9	132
20	Enzyme (re)design: lessons from natural evolution and computation. Current Opinion in Chemical Biology, 2009, 13, 10-18.	2.8	126
21	Glutathione Transferases Are Structural and Functional Outliers in the Thioredoxin Fold. Biochemistry, 2009, 48, 11108-11116.	1.2	125
22	Discovery of new enzymes and metabolic pathways by using structure and genome context. Nature, 2013, 502, 698-702.	13.7	124
23	Unexpected Divergence of Enzyme Function and Sequence: "N-Acylamino Acid Racemase― Iso-Succinylbenzoate Synthaseâ€. Biochemistry, 1999, 38, 4252-4258.	1.2	118
24	Divergent Evolution in Enolase Superfamily: Strategies for Assigning Functions. Journal of Biological Chemistry, 2012, 287, 29-34.	1.6	118
25	An Atlas of the Thioredoxin Fold Class Reveals the Complexity of Function-Enabling Adaptations. PLoS Computational Biology, 2009, 5, e1000541.	1.5	114
26	Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9549-E9558.	3.3	111
27	Mechanistically diverse enzyme superfamilies: the importance of chemistry in the evolution of catalysis. Current Opinion in Chemical Biology, 1998, 2, 607-612.	2.8	107
28	Biases in the Experimental Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space. PLoS Computational Biology, 2013, 9, e1003063.	1.5	103
29	Differential use of protease families for invasion by schistosome cercariae. Biochimie, 2008, 90, 345-358.	1.3	100
30	Atlas of the Radical SAM Superfamily: Divergent Evolution of Function Using a "Plug and Play― Domain. Methods in Enzymology, 2018, 606, 1-71.	0.4	99
31	Prediction and assignment of function for a divergent N-succinyl amino acid racemase. Nature Chemical Biology, 2007, 3, 486-491.	3.9	98
32	The global cysteine peptidase landscape in parasites. Trends in Parasitology, 2009, 25, 573-581.	1.5	88
33	Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function. Nature, 2013, 498, 123-126.	13.7	84
34	Evidence ThatpcpAEncodes 2,6-Dichlorohydroquinone Dioxygenase, the Ring Cleavage Enzyme Required for Pentachlorophenol Degradation inSphingomonas chlorophenolicaStrain ATCC 39723â€. Biochemistry, 1999, 38, 7659-7669.	1.2	81
35	Prediction and characterization of enzymatic activities guided by sequence similarity and genome neighborhood networks. ELife, 2014, 3, .	2.8	81
36	Large-Scale Determination of Sequence, Structure, and Function Relationships in Cytosolic Glutathione Transferases across the Biosphere. PLoS Biology, 2014, 12, e1001843.	2.6	79

#	Article	IF	CITATIONS
37	Prediction of function for the polyprenyl transferase subgroup in the isoprenoid synthase superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1196-202.	3.3	75
38	Automated discovery of 3D motifs for protein function annotation. Bioinformatics, 2006, 22, 723-730.	1.8	73
39	Insights into the Mechanism of Catalysis by the Pâ^'C Bond-Cleaving Enzyme Phosphonoacetaldehyde Hydrolase Derived from Gene Sequence Analysis and Mutagenesis. Biochemistry, 1998, 37, 9305-9315.	1.2	71
40	Definitions of enzyme function for the structural genomics era. Current Opinion in Chemical Biology, 2003, 7, 230-237.	2.8	71
41	structureViz: linking Cytoscape and UCSF Chimera. Bioinformatics, 2007, 23, 2345-2347.	1.8	71
42	3-Carboxy-cis,cis-muconate lactonizing enzyme from Pseudomonas putida is homologous to the class II fumarase family: a new reaction in the evolution of a mechanistic motif. Biochemistry, 1992, 31, 9768-9776.	1.2	68
43	On the origins and functions of the enzymes of the 4-chlorobenzoate to 4-hydroxybenzoate converting pathway. Biodegradation, 1994, 5, 259-276.	1.5	68
44	Evolution of Structure and Function in the o-Succinylbenzoate Synthase/N-Acylamino Acid Racemase Family of the Enolase Superfamily. Journal of Molecular Biology, 2006, 360, 228-250.	2.0	65
45	Functional Assignment of the 20 S Proteasome from Trypanosoma brucei Using Mass Spectrometry and New Bioinformatics Approaches. Journal of Biological Chemistry, 2001, 276, 28327-28339.	1.6	64
46	A gold standard set of mechanistically diverse enzyme superfamilies. Genome Biology, 2006, 7, R8.	13.9	62
47	Cloning and Functional Characterization of a Rat Renal Organic Cation Transporter Isoform (rOCT1A). Journal of Biological Chemistry, 1997, 272, 16548-16554.	1.6	58
48	Evolution of Function in the "Two Dinucleotide Binding Domains―Flavoproteins. PLoS Computational Biology, 2007, 3, e121.	1.5	58
49	Evolutionary constraints on structural similarity in orthologs and paralogs. Protein Science, 2009, 18, 1306-1315.	3.1	58
50	Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks. Biochemistry, 2018, 57, 4651-4662.	1.2	58
51	New Insights about Enzyme Evolution from Large Scale Studies of Sequence and Structure Relationships. Journal of Biological Chemistry, 2014, 289, 30221-30228.	1.6	57
52	[FeFe]-Hydrogenase Maturation: Insights into the Role HydE Plays in Dithiomethylamine Biosynthesis. Biochemistry, 2015, 54, 1807-1818.	1.2	57
53	Homology models guide discovery of diverse enzyme specificities among dipeptide epimerases in the enolase superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4122-4127.	3.3	56
54	Redesigning Enzymes Based on Adaptive Evolution for Optimal Function in Synthetic Metabolic Pathways. Chemistry and Biology, 2008, 15, 607-618.	6.2	53

#	Article	IF	CITATIONS
55	Discovery of a Dipeptide Epimerase Enzymatic Function Guided by Homology Modeling and Virtual Screening. Structure, 2008, 16, 1668-1677.	1.6	52
56	Mutations in PNKD causing paroxysmal dyskinesia alters protein cleavage and stability. Human Molecular Genetics, 2011, 20, 2322-2332.	1.4	52
57	Superfamily active site templates. Proteins: Structure, Function and Bioinformatics, 2004, 55, 962-976.	1.5	49
58	Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha. Plant Cell, 2016, 28, tpc.00062.2016.	3.1	48
59	Parallel molecular mechanisms for enzyme temperature adaptation. Science, 2021, 371, .	6.0	48
60	Comparisons of creatine kinase primary structures. The Protein Journal, 1986, 5, 1-14.	1.1	45
61	Inference of Functional Properties from Large-scale Analysis of Enzyme Superfamilies. Journal of Biological Chemistry, 2012, 287, 35-42.	1.6	45
62	SmCL3, a Gastrodermal Cysteine Protease of the Human Blood Fluke Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2009, 3, e449.	1.3	45
63	The evolution of function in strictosidine synthaseâ€like proteins. Proteins: Structure, Function and Bioinformatics, 2011, 79, 3082-3098.	1.5	43
64	Pythoscape: a framework for generation of large protein similarity networks. Bioinformatics, 2012, 28, 2845-2846.	1.8	42
65	Removal of a Proteolytic Activity Associated with Aggregates Formed from Expression of Creatine Kinase in Escherichia coli Leads to Improved Recovery of Active Enzyme. Nature Biotechnology, 1990, 8, 945-949.	9.4	40
66	Toward mechanistic classification of enzyme functions. Current Opinion in Chemical Biology, 2011, 15, 435-442.	2.8	40
67	A global view of structure–function relationships in the tautomerase superfamily. Journal of Biological Chemistry, 2018, 293, 2342-2357.	1.6	39
68	New functions from old scaffolds: How nature reengineers enzymes for new functions. Advances in Protein Chemistry, 2001, 55, 1-28.	4.4	36
69	Evolution of Enzymatic Activities in the Enolase Superfamily: Stereochemically Distinct Mechanisms in Two Families of <i>cis</i> , <i>cis</i> .Muconate Lactonizing Enzymes. Biochemistry, 2009, 48, 1445-1453.	1.2	36
70	Improving the quality of protein similarity network clustering algorithms using the network edge weight distribution. Bioinformatics, 2011, 27, 326-333.	1.8	36
71	Evolution of Enzymatic Activities in the Enolase Superfamily:Â Crystal Structure of (D)-Glucarate Dehydratase fromPseudomonasputidaâ€,‡. Biochemistry, 1998, 37, 14358-14368.	1.2	35
72	A Mapping of Drug Space from the Viewpoint of Small Molecule Metabolism. PLoS Computational Biology, 2009, 5, e1000474.	1.5	34

ARTICLE IF CITATIONS Quantitative Comparison of Catalytic Mechanisms and Overall Reactions in Convergently Evolved Enzymes: Implications for Classification of Enzyme Function. PLoS Computational Biology, 2010, 6, 1.5 e1000700. Barrels in pieces?., 2001, 8, 5-7. 74 29 Reengineering the glutathione S-transferase scaffold: A rational design strategy pays off. Proceedings 3.3 of the National Academy of Sciences of the United States of America, 2000, 97, 10298-10300. Covalent Docking Predicts Substrates for Haloalkanoate Dehalogenase Superfamily Phosphatases. 76 1.2 26 Biochemistry, 2015, 54, 528-537. At the Periphery of the Amidohydrolase Superfamily:  Bh0493 from <i>Bacillus halodurans</i>Catalyzes the Isomerization of <scp>d</scp>-Galacturonate to 1.2 <scp>d</scp>-Tagaturonate[,]. Biochemistry, 2008, 47, 1194-1206. Target selection and annotation for the structural genomics of the amidohydrolase and enolase 78 1.2 25 superfamilies. Journal of Structural and Functional Genomics, 2009, 10, 107-125. Mechanisms of Protein Evolution and their Application to Protein Engineering. Advances in Enzymology and Related Areas of Molecular Biology, 2010, 75, 193-239. 79 1.3 Consequences of domain insertion on sequence-structure divergence in a superfold. Proceedings of 80 3.3 25 the National Academy of Sciences of the United States of America, 2013, 110, E3381-7. Structural Diversity within the Mononuclear and Binuclear Active Sites of 1.2 N-Acetyl-d-glucosamine-6-phosphate Deacetylase,. Biochemistry, 2007, 46, 7953-7962. Predicting the Functions and Specificity of Triterpenoid Synthases: A Mechanism-Based 82 1.5 23 Multi-intermediate Docking Approach. PLoS Computational Biology, 2014, 10, e1003874. Determinants of the CmoB carboxymethyl transferase utilized for selective tRNA wobble 83 23 6.5 modification. Nucleic Acids Research, 2015, 43, 4602-4613. A comparative study of human muscle and brain creatine kinases expressed in Escherichia coli. The 84 1.1 22 Protein Journal, 2000, 19, 59-66. Topological variation in the evolution of new reactions in functionally diverse enzyme superfamilies. 2.6 Current Opinion in Structural Biology, 2011, 21, 391-397. Evolutionarily Conserved Substrate Substructures for Automated Annotation of Enzyme 86 1.5 21 Superfamilies. PLoS Computational Biology, 2008, 4, e1000142. An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally 1.5 Relevant Clustering of Proteins. PLoS Computational Biology, 2017, 13, e1005284. Biophysical studies support a predicted superhelical structure with armadillo repeats for Ricâ€8. 88 3.1 16 Protein Science, 2009, 18, 1139-1145. A semiautomated approach to gene discovery through expressed sequence tag data mining: Discovery 1.3 of new human transporter genes. AAPS PharmSci, 2003, 5, 1-18.

PATRICIA C BABBITT

90Annotating Enzymes of Uncertain Function: The Deacylation of <scp>d</scp>-Amino Acids by Members
of the Amidohydrolase Superfamily[,]. Biochemistry, 2009, 48, 6469-6481.1.215

#	Article	IF	CITATIONS
91	The principal islet of the coho salmon (Oncorhyncus kisutch) contains the BB isoenzyme of creatine kinase. The Protein Journal, 1992, 11, 489-494.	1.1	14
92	Mechanistic and Bioinformatic Investigation of a Conserved Active Site Helix in α-Isopropylmalate Synthase fromMycobacterium tuberculosis, a Member of the DRE-TIM Metallolyase Superfamily. Biochemistry, 2014, 53, 2915-2925.	1.2	14
93	Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity. Protein Science, 2015, 24, 1423-1439.	3.1	14
94	Evaluating Functional Annotations of Enzymes Using the Gene Ontology. Methods in Molecular Biology, 2017, 1446, 111-132.	0.4	14
95	Representing structure-function relationships in mechanistically diverse enzyme superfamilies. Pacific Symposium on Biocomputing, 2005, , 358-69.	0.7	14
96	Key challenges for the creation and maintenance of specialist protein resources. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1005-1013.	1.5	13
97	An approach to functionally relevant clustering of the protein universe: Active site profileâ€based clustering of protein structures and sequences. Protein Science, 2017, 26, 677-699.	3.1	13
98	Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions. Methods in Enzymology, 2019, 620, 315-347.	0.4	13
99	Effusion: prediction of protein function from sequence similarity networks. Bioinformatics, 2019, 35, 442-451.	1.8	12
100	New computational approaches to understanding molecular protein function. PLoS Computational Biology, 2018, 14, e1005756.	1.5	11
101	REPRESENTING STRUCTURE-FUNCTION RELATIONSHIPS IN MECHANISTICALLY DIVERSE ENZYME SUPERFAMILIES. , 2004, , .		10
102	Kinetic and structural characterization of a cis -3-Chloroacrylic acid dehalogenase homologue in Pseudomonas sp. UW4: A potential step between subgroups in the tautomerase superfamily. Archives of Biochemistry and Biophysics, 2017, 636, 50-56.	1.4	9
103	Integrated Tools for Structural and Sequence Alignment and Analysis. , 1999, , 230-41.		9
104	Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat: Figure 1 Database: the Journal of Biological Databases and Curation, 2015, 2015, bav063.	1.4	8
105	3D Motifs. , 2017, , 361-392.		7
106	DASP3: identification of protein sequences belonging to functionally relevant groups. BMC Bioinformatics, 2016, 17, 458.	1.2	6
107	Biocuration in the structure–function linkage database: the anatomy of a superfamily. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	6
108	Structural, Kinetic, and Mechanistic Analysis of an Asymmetric 4-Oxalocrotonate Tautomerase Trimer. Biochemistry, 2019, 58, 2617-2627.	1.2	6

#	Article	IF	CITATIONS
109	Structural Basis for the Asymmetry of a 4-Oxalocrotonate Tautomerase Trimer. Biochemistry, 2020, 59, 1592-1603.	1.2	6
110	Using the Structureâ€Function Linkage Database to Characterize Functional Domains in Enzymes. Current Protocols in Bioinformatics, 2014, 48, 2.10.1-16.	25.8	5
111	A strategy for large-scale comparison of evolutionary- and reaction-based classifications of enzyme function. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	5
112	Active Creatine Kinase Refolded from Inclusion Bodies in Escherichia coli. ACS Symposium Series, 1991, , 153-168.	0.5	3
113	A Global Comparison of the Human and T. brucei Degradomes Gives Insights about Possible Parasite Drug Targets. PLoS Neglected Tropical Diseases, 2012, 6, e1942.	1.3	3
114	Kinetic and Structural Analysis of Two Linkers in the Tautomerase Superfamily: Analysis and Implications. Biochemistry, 2021, 60, 1776-1786.	1.2	3
115	3D Motifs. , 2009, , 187-216.		3
116	Biocuration in the structure–function linkage database: the anatomy of a superfamily. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	2
117	Evolutionary Reprograming of Protein-Protein Interaction Specificity. Cell, 2015, 163, 535-537.	13.5	1
118	Intersect: identification and visualization of overlaps in database search results. Bioinformatics, 2003, 19, 1997-1999.	1.8	0
119	Session Introduction. , 2004, , .		0
120	The nature of sequence and structure divergence in the Haloalkanoate Dehalogenase SuperFamily (HADSF). FASEB Journal, 2013, 27, 797.2.	0.2	0
121	Introduction to informatics approaches in structural genomics: modeling and representation of function from macromolecular structure. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2005, , 319-21.	0.7	0