
Jing Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7360542/publications.pdf Version: 2024-02-01

LINC LIANC

#	Article	IF	CITATIONS
1	A study of highly efficient phenol biodegradation by a versatile <i>Bacillus cereus</i> ZWB3 on aerobic condition. Water Science and Technology, 2022, 86, 355-366.	2.5	7
2	Host–Guest Interaction Driven Peptide Assembly into Photoresponsive Two-Dimensional Nanosheets with Switchable Antibacterial Activity. CCS Chemistry, 2021, 3, 1949-1962.	7.8	16
3	Enhanced degradation of phenol by a novel biomaterial through the immobilization of bacteria on cationic straw. Water Science and Technology, 2021, 84, 3791-3798.	2.5	2
4	Recent advances on porous interfaces for biomedical applications. Soft Matter, 2020, 16, 7231-7245.	2.7	6
5	Self-assembled quantum dot microstructure guided by a microemulsion approach for immunoassays. RSC Advances, 2019, 9, 26838-26842.	3.6	4
6	Self-organized nanocrystal rings formed by microemulsion for selective recognition of proteins and immunoassays. RSC Advances, 2019, 9, 699-703.	3.6	0
7	Assembly of heteropoly acid into localized porous structures for <i>in situ</i> preparation of silver and polypyrrole nanoparticles. RSC Advances, 2018, 8, 36558-36562.	3.6	1
8	Asymmetric surface modification of yeast cells for living self-assembly. Chemical Communications, 2018, 54, 14112-14115.	4.1	6
9	A patterned porous polymer film for localized capture of insulin and glucose-responsive release. Journal of Materials Chemistry B, 2015, 3, 1281-1288.	5.8	43
10	Selective adhesion and controlled activity of yeast cells on honeycomb-patterned polymer films via a microemulsion approach. Chemical Communications, 2014, 50, 15882-15885.	4.1	19
11	Preparation of hybrid films containing polyoxometalate and fluorescein and their electrochemically induced fluorescence switching behaviors. Journal of Materials Chemistry C, 2014, 2, 4423.	5.5	13
12	Polyanion cluster patterning on polymer surface through microemulsion approach for selective adsorption of proteins. Journal of Colloid and Interface Science, 2013, 409, 80-87.	9.4	28
13	Organo-Ru supported sandwich-type tungstoarsenates: synthesis, structure and catalytic properties. CrystEngComm, 2013, 15, 5867.	2.6	17
14	Honeycomb Micropatterning of Proteins on Polymer Films through the Inverse Microemulsion Approach. Chemistry - A European Journal, 2012, 18, 526-531.	3.3	34
15	[(C4H12N)2][Zn3(HPO3)4]: An Open-Framework Zinc Phosphite Containing Extra-Large 24-Ring Channels. Angewandte Chemie - International Edition, 2006, 45, 2546-2548.	13.8	156
16	Synthesis and structure of a new layered zinc phosphite (C5H6N2)Zn(HPO3) containing helical chains. Chemical Communications, 2003, , 882-883.	4.1	105