Maite GarcÃ-a-FernÃ;ndez de Barrena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7360410/publications.pdf

Version: 2024-02-01

Maite GarcÃa-FernÃindez de

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Stromal Elements Act to Restrain, Rather Than Support, Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2014, 25, 735-747.	16.8	1,616
3	Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice. Gut, 2013, 62, 899-910.	12.1	163
4	Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut, 2017, 66, 1818-1828.	12.1	118
5	Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nature Communications, 2017, 8, 15424.	12.8	109
6	Galectin-1 Drives Pancreatic Carcinogenesis through Stroma Remodeling and Hedgehog Signaling Activation. Cancer Research, 2014, 74, 3512-3524.	0.9	100
7	SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. Journal of Hepatology, 2017, 67, 72-83.	3.7	81
8	Dual Targeting of Histone Methyltransferase G9a and DNAâ€Methyltransferase 1 for the Treatment of Experimental Hepatocellular Carcinoma. Hepatology, 2019, 69, 587-603.	7.3	81
9	lleal <scp>FGF</scp> 15 contributes to fibrosisâ€associated hepatocellular carcinoma development. International Journal of Cancer, 2015, 136, 2469-2475.	5.1	79
10	Novel AKT1-GLI3-VMP1 Pathway Mediates KRAS Oncogene-induced Autophagy in Cancer Cells. Journal of Biological Chemistry, 2012, 287, 25325-25334.	3.4	76
11	MicroRNAâ€506 promotes primary biliary cholangitis–like features in cholangiocytes and immune activation. Hepatology, 2018, 67, 1420-1440.	7.3	72
12	The Transcription Factor GL11 Mediates TGFβ1 Driven EMT in Hepatocellular Carcinoma via a SNAI1-Dependent Mechanism. PLoS ONE, 2012, 7, e49581.	2.5	68
13	Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/Câ€X chemokine receptor 4 axis. Hepatology, 2015, 62, 166-178.	7.3	61
14	GLI1 Inhibition Promotes Epithelial-to-Mesenchymal Transition in Pancreatic Cancer Cells. Cancer Research, 2012, 72, 88-99.	0.9	60
15	Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases. Gut, 2014, 63, 1658-1667.	12.1	55
16	Splicing events in the control of genome integrity: role of SLU7 and truncated SRSF3 proteins. Nucleic Acids Research, 2019, 47, 3450-3466.	14.5	53
17	The Transcription Factor GLI1 Interacts with SMAD Proteins to Modulate Transforming Growth Factor β-Induced Gene Expression in a p300/CREB-binding Protein-associated Factor (PCAF)-dependent Manner. Journal of Biological Chemistry, 2014, 289, 15495-15506.	3.4	52
18	Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Reports, 2020, 2, 100167.	4.9	51

Maite GarcÃa-FernÃindez de

#	Article	IF	CITATIONS
19	Epigenetic Mechanisms in Hepatic Stellate Cell Activation During Liver Fibrosis and Carcinogenesis. International Journal of Molecular Sciences, 2019, 20, 2507.	4.1	45
20	Regulation of GLI Underlies a Role for BET Bromodomains in Pancreatic Cancer Growth and the Tumor Microenvironment. Clinical Cancer Research, 2016, 22, 4259-4270.	7.0	44
21	Lack of Abcc3 expression impairs bile-acid induced liver growth and delays hepatic regeneration after partial hepatectomy in mice. Journal of Hepatology, 2012, 56, 367-373.	3.7	43
22	Matrix metalloproteinaseâ€10 expression is induced during hepatic injury and plays a fundamental role in liver tissue repair. Liver International, 2014, 34, e257-70.	3.9	43
23	The Transcription Factor GLI1 Modulates the Inflammatory Response during Pancreatic Tissue Remodeling. Journal of Biological Chemistry, 2014, 289, 27727-27743.	3.4	43
24	The Epidermal Growth Factor Receptor Ligand Amphiregulin Protects From Cholestatic Liver Injury and Regulates Bile Acids Synthesis. Hepatology, 2019, 69, 1632-1647.	7.3	42
25	Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach. Cancers, 2020, 12, 1644.	3.7	38
26	Current and novel therapeutic opportunities for systemic therapy in biliary cancer. British Journal of Cancer, 2020, 123, 1047-1059.	6.4	37
27	The TGF-β Pathway: A Pharmacological Target in Hepatocellular Carcinoma?. Cancers, 2021, 13, 3248.	3.7	37
28	Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis. Gut, 2021, 70, gutjnl-2019-320205.	12.1	36
29	Fibroblast Growth Factor 15/19 in Hepatocarcinogenesis. Digestive Diseases, 2017, 35, 158-165.	1.9	35
30	Bile acids, FGF15/19 and liver regeneration: From mechanisms to clinical applications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1326-1334.	3.8	34
31	Identification of novel nonâ€coding RNAâ€based negative feedback regulating the expression of the oncogenic transcription factor GLI1. Molecular Oncology, 2014, 8, 912-926.	4.6	33
32	Next-generation sequencing of bile cell-free DNA for the early detection of patients with malignant biliary strictures. Gut, 2022, 71, 1141-1151.	12.1	32
33	Activation of the Transcription Factor GLI1 by WNT Signaling Underlies the Role of SULFATASE 2 as a Regulator of Tissue Regeneration. Journal of Biological Chemistry, 2013, 288, 21389-21398.	3.4	31
34	MicroRNAs in biliary diseases. World Journal of Gastroenterology, 2012, 18, 6189.	3.3	30
35	IKBKE Is Required during KRAS-Induced Pancreatic Tumorigenesis. Cancer Research, 2017, 77, 320-329.	0.9	29
36	FOSL1 promotes cholangiocarcinoma via transcriptional effectors that could be therapeutically targeted. Journal of Hepatology, 2021, 75, 363-376.	3.7	29

Maite GarcÃa-FernÃindez de

#	Article	IF	CITATIONS
37	Splicing regulator SLU7 preserves survival of hepatocellular carcinoma cells and other solid tumors via oncogenic miR-17-92 cluster expression. Oncogene, 2016, 35, 4719-4729.	5.9	27
38	Dual Targeting of C9a and DNA Methyltransferaseâ€l for the Treatment of Experimental Cholangiocarcinoma. Hepatology, 2021, 73, 2380-2396.	7.3	26
39	Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities. International Journal of Molecular Sciences, 2020, 21, 5500.	4.1	25
40	Epigenetic Biomarkers for the Diagnosis and Treatment of Liver Disease. Cancers, 2021, 13, 1265.	3.7	23
41	GLI1/GLI2 functional interplay is required to control Hedgehog/GLI targets gene expression. Biochemical Journal, 2020, 477, 3131-3145.	3.7	23
42	Oral Methylthioadenosine Administration Attenuates Fibrosis and Chronic Liver Disease Progression in Mdr2â^'/â^' Mice. PLoS ONE, 2010, 5, e15690.	2.5	23
43	Inactivation of the Transcription Factor GLI1 Accelerates Pancreatic Cancer Progression. Journal of Biological Chemistry, 2014, 289, 16516-16525.	3.4	22
44	Proteostasis disturbances and endoplasmic reticulum stress contribute to polycystic liver disease: New therapeutic targets. Liver International, 2020, 40, 1670-1685.	3.9	22
45	Epigenetics in Liver Fibrosis: Could HDACs be a Therapeutic Target?. Cells, 2020, 9, 2321.	4.1	21
46	Epigenetic remodelling in human hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 107.	8.6	21
47	Novel IncRNA T-UCR as a potential downstream driver of the Wnt/β-catenin pathway in hepatobiliary carcinogenesis. Gut, 2017, 66, 1177-1178.	12.1	19
48	Nuclear Factor of Activated T Cells-dependent Down-regulation of the Transcription Factor Glioma-associated Protein 1 (GLI1) Underlies the Growth Inhibitory Properties of Arachidonic Acid. Journal of Biological Chemistry, 2016, 291, 1933-1947.	3.4	17
49	Engineered fibroblast growth factor 19 protects from acetaminophen-induced liver injury and stimulates aged liver regeneration in mice. Cell Death and Disease, 2017, 8, e3083-e3083.	6.3	17
50	Disposable sensors for rapid screening of mutated genes. Analytical and Bioanalytical Chemistry, 2010, 398, 1385-1393.	3.7	14
51	Splicing Factor SLU7 Prevents Oxidative Stressâ€Mediated Hepatocyte Nuclear Factor 4α Degradation, Preserving Hepatic Differentiation and Protecting From Liver Damage. Hepatology, 2021, 74, 2791-2807.	7.3	12
52	Fibroblast growth factors 19 and 21 in acute liver damage. Annals of Translational Medicine, 2018, 6, 257-257.	1.7	11
53	Targeting NAE1-mediated protein hyper-NEDDylation halts cholangiocarcinogenesis and impacts on tumor-stroma crosstalk in experimental models. Journal of Hepatology, 2022, 77, 177-190.	3.7	11
54	Chromatin dynamics during liver regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 38-46.	5.0	10

#	Article	IF	CITATIONS
55	New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	8.6	9
56	Dual Pharmacological Targeting of HDACs and PDE5 Inhibits Liver Disease Progression in a Mouse Model of Biliary Inflammation and Fibrosis. Cancers, 2020, 12, 3748.	3.7	6
57	Fragile X mental retardation protein in intrahepatic cholangiocarcinoma: regulating the cancer cell behavior plasticity at the leading edge. Oncogene, 2021, 40, 4033-4049.	5.9	5
58	DNA Methylation Regulates a Set of Long Non-Coding RNAs Compromising Hepatic Identity during Hepatocarcinogenesis. Cancers, 2022, 14, 2048.	3.7	5
59	New molecular interactions of câ€Myc in cholangiocarcinoma may open new therapeutic opportunities. Hepatology, 2016, 64, 336-339.	7.3	3
60	New evidence supporting the biliary bicarbonate umbrella theory. Clinics and Research in Hepatology and Gastroenterology, 2017, 41, 126-128.	1.5	3
61	Impact of <i>CYLD</i> on chromatin structure and histone methylation in malignant melanoma. International Journal of Molecular Medicine, 2022, 49, .	4.0	3
62	Metabolic-associated fatty liver disease: From simple steatosis toward liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, organized by the Spanish Association for the Study of the Liver (AEEH). GastroenterologAa Y HepatologAa, 2022, 45, 724-734.	0.5	3
63	Activation of the Unfolded Protein Response (UPR) Is Associated with Cholangiocellular Injury, Fibrosis and Carcinogenesis in an Experimental Model of Fibropolycystic Liver Disease. Cancers, 2022, 14, 78.	3.7	3
64	Development of a New Hepatoprotective and Proregenerative Molecule Based on Fibroblast Growth Factor 15/19. Journal of Hepatology, 2016, 64, S184.	3.7	2
65	The splicing regulator SLU7 is required to preserve DNMT1 protein stability and DNA methylation. Nucleic Acids Research, 2021, 49, 8592-8609.	14.5	2
66	GLI1 Modulates EMT in Pancreatic Cancer—Response. Cancer Research, 2012, 72, 3704-3705.	0.9	1
67	Discovering and targeting the epigenetic pathways to treat muscle loss. Current Opinion in Supportive and Palliative Care, 2014, 8, 319-320.	1.3	1
68	SOX17 Regulates Cholangiocyte Differentiation and Acts as a Tumour Suppressor in Cholangiocarcinoma. Journal of Hepatology, 2016, 64, S569-S570.	3.7	1
69	Overexpression of Mirna-506 in Human Cholangiocytes Causes Primary Biliary Cholangitis-Like Features including Mitochondrial Dysfunction and Increased Sensitivity to Apoptosis. Journal of Hepatology, 2016, 64, S639-S640.	3.7	1
70	PS-043-Dual targeting of G9a and DNM-methyltransferase-1 for the treatment of experimental cholangiocarcinoma. Journal of Hepatology, 2019, 70, e27-e28.	3.7	1
71	Epigenetic control of KRAS-induced transformation by GLI transcription factors. Pancreatology, 2013, 13, e25.	1.1	0
72	300 IDENTIFICATION OF MATRIX METALLOPROTEASE 10 (MMP10) AS A KEY NEW MEDIATOR OF THE REGENERATIVE RESPONSE OF THE LIVER. Journal of Hepatology, 2013, 58, S126.	3.7	0

#	Article	IF	CITATIONS
73	O97 GUT-DERIVED FGF15 PLAYS A CENTRAL ROLE IN FIBROSIS-ASSOCIATED HEPATOCARCINOGENESIS. Journal of Hepatology, 2014, 60, S40.	3.7	0
74	O096 : Matrix metalloproteinase-10 contributes to hepatocellular carcinoma development in a novel crosstalk with stromal derived growth factor 1/C-X-C chemokine receptor 4 axis. Journal of Hepatology, 2015, 62, S242.	3.7	0
75	Development of novel epigenetic inhibitors for the treatment of hepatocellular carcinoma. Journal of Hepatology, 2017, 66, S76-S77.	3.7	0
76	Novel role of amphiregulin in bile acids metabolism and protection from cholestatic liver injury. Journal of Hepatology, 2018, 68, S74.	3.7	0
77	THU-468-SLU7 controls genome integrity: New role of truncated SRSF3 proteins. Journal of Hepatology, 2019, 70, e365-e366.	3.7	0
78	THU-064-Identification of new epigenetic targets in hepatic fibrosis. Journal of Hepatology, 2019, 70, e188.	3.7	0