Vasilii I Artyukhov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7360365/publications.pdf Version: 2024-02-01

VASILIE LADTVICKHOV

#	Article	IF	CITATIONS
1	Kinetically Determined Shapes of Grain Boundaries in Graphene. ACS Nano, 2021, 15, 4893-4900.	14.6	11
2	Flexoelectricity and Charge Separation in Carbon Nanotubes. Nano Letters, 2020, 20, 3240-3246.	9.1	32
3	Mechanochemistry of One-Dimensional Boron: Structural and Electronic Transitions. Journal of the American Chemical Society, 2017, 139, 2111-2117.	13.7	41
4	A jellium model of a catalyst particle in carbon nanotube growth. Journal of Chemical Physics, 2017, 146, 244701.	3.0	5
5	Carbon Fibers: Carbonization with Misfusion: Fundamental Limits of Carbon-Fiber Strength Revisited (Adv. Mater. 46/2016). Advanced Materials, 2016, 28, 10342-10342.	21.0	0
6	Topochemistry of Bowtie- and Star-Shaped Metal Dichalcogenide Nanoisland Formation. Nano Letters, 2016, 16, 3696-3702.	9.1	46
7	Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. Nano Research, 2016, 9, 2182-2189.	10.4	44
8	Carbonization with Misfusion: Fundamental Limits of Carbonâ€Fiber Strength Revisited. Advanced Materials, 2016, 28, 10317-10322.	21.0	35
9	Breaking of Symmetry in Graphene Growth on Metal Substrates. Physical Review Letters, 2015, 114, 115502.	7.8	68
10	Basic structural units in carbon fibers: Atomistic models and tensile behavior. Carbon, 2015, 85, 72-78.	10.3	36
11	Defect-Detriment to Graphene Strength Is Concealed by Local Probe: The Topological and Geometrical Effects. ACS Nano, 2015, 9, 401-408.	14.6	66
12	New insights into the properties and interactions of carbon chains as revealed by HRTEM and DFT analysis. Carbon, 2014, 66, 436-441.	10.3	58
13	Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water–Xe system. Journal of Chemical Physics, 2014, 141, 034503.	3.0	13
14	Extensive Energy Landscape Sampling of Nanotube End-Caps Reveals No Chiral-Angle Bias for Their Nucleation. ACS Nano, 2014, 8, 1899-1906.	14.6	34
15	Why nanotubes grow chiral. Nature Communications, 2014, 5, 4892.	12.8	158
16	Large Hexagonal Bi―and Trilayer Graphene Single Crystals with Varied Interlayer Rotations. Angewandte Chemie - International Edition, 2014, 53, 1565-1569.	13.8	82
17	Mechanically Induced Metal–Insulator Transition in Carbyne. Nano Letters, 2014, 14, 4224-4229.	9.1	130
18	Carbyne from First Principles: Chain of C Atoms, a Nanorod or a Nanorope. ACS Nano, 2013, 7, 10075-10082.	14.6	375

VASILII I ARTYUKHOV

#	Article	IF	CITATIONS
19	Pseudo Hall–Petch Strength Reduction in Polycrystalline Graphene. Nano Letters, 2013, 13, 1829-1833.	9.1	172
20	Feasibility of Lithium Storage on Graphene and Its Derivatives. Journal of Physical Chemistry Letters, 2013, 4, 1737-1742.	4.6	297
21	Equilibrium at the edge and atomistic mechanisms of graphene growth. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15136-15140.	7.1	236
22	Ripping Graphene: Preferred Directions. Nano Letters, 2012, 12, 293-297.	9.1	200
23	Unfolding the Fullerene: Nanotubes, Graphene and Polyâ€Elemental Varieties by Simulations. Advanced Materials, 2012, 24, 4956-4976.	21.0	50
24	A model of single-electron transport. Calculation of the thermodynamic parameters for electron capture by the bound proton of oxyacids. Russian Journal of Physical Chemistry B, 2011, 5, 748-764.	1.3	0
25	A six degree of freedom nanomanipulator design based on carbon nanotube bundles. Nanotechnology, 2010, 21, 385304.	2.6	0
26	Structure and Layer Interaction in Carbon Monofluoride and Graphane: A Comparative Computational Study. Journal of Physical Chemistry A, 2010, 114, 5389-5396.	2.5	44
27	Theoretical Study of Two-Dimensional Silica Films. Journal of Physical Chemistry C, 2010, 114, 9678-9684.	3.1	9
28	Vacancyâ€patterned graphene: A metaâ€material for spintronics. Physica Status Solidi (B): Basic Research, 2009, 246, 2534-2539.	1.5	5
29	New phase of polymeric C ₆₀ : double chains via [2+2] cycloaddition. Physica Status Solidi (B): Basic Research, 2008, 245, 2022-2024.	1.5	2
30	Quantum-chemical study of methane nitrosation with NO in the presence of superelectrophiles containing the trichloromethyl cation. Doklady Physical Chemistry, 2007, 414, 132-135.	0.9	0
31	New Hollow SiO2Clusters: Structure, Energy and Electronic Characteristics. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 545-550.	2.1	3
32	Silica nanotube multi-terminal junctions as a coating for carbon nanotube junctions. Physical Review B, 2006, 74, .	3.2	12