
Gwo-Yu Chuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7360158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus. Science, 2013, 342, 592-598.	12.6	797
2	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.	27.8	794
3	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	27.8	702
4	Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.	28.9	379
5	Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nature Structural and Molecular Biology, 2015, 22, 522-531.	8.2	333
6	Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 2013, 39, 245-258.	14.3	332
7	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	12.6	310
8	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305
9	Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity, 2016, 45, 1108-1121.	14.3	304
10	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	30.7	256
11	Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody <i>In Vitro</i> Improves Protection against Lentiviral Infection <i>In Vivo</i> . Journal of Virology, 2014, 88, 12669-12682.	3.4	248
12	Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection. Cell, 2015, 161, 470-485.	28.9	226
13	Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization. Science, 2013, 340, 751-756.	12.6	213
14	New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. Journal of Virology, 2016, 90, 76-91.	3.4	205
15	Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.	8.2	162
16	DeepSol: a deep learning framework for sequence-based protein solubility prediction. Bioinformatics, 2018, 34, 2605-2613.	4.1	140
17	Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529. Nature Chemical Biology, 2017, 13, 1115-1122.	8.0	110
18	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	28.9	106

Gwo-Yu Chuang

#	Article	IF	CITATIONS
19	Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer. Nature Structural and Molecular Biology, 2017, 24, 370-378.	8.2	94
20	A Universal Approach to Optimize the Folding and Stability of Prefusion-Closed HIV-1 Envelope Trimers. Cell Reports, 2018, 23, 584-595.	6.4	93
21	PaRSnIP: sequence-based protein solubility prediction using gradient boosting machine. Bioinformatics, 2018, 34, 1092-1098.	4.1	90
22	Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .	3.4	81
23	Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1 Strains. Cell Reports, 2017, 21, 2992-3002.	6.4	69
24	Structural Survey of Broadly Neutralizing Antibodies Targeting the HIV-1 Env Trimer Delineates Epitope Categories and Characteristics of Recognition. Structure, 2019, 27, 196-206.e6.	3.3	69
25	A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. Immunity, 2018, 48, 500-513.e6.	14.3	66
26	Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains. Journal of Virology, 2013, 87, 10047-10058.	3.4	64
27	Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. Cell Reports, 2020, 31, 107488.	6.4	53
28	Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody. Cell Reports, 2018, 22, 1798-1809.	6.4	52
29	Lattice engineering enables definition of molecular features allowing for potent small-molecule inhibition of HIV-1 entry. Nature Communications, 2019, 10, 47.	12.8	50
30	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	12.6	49
31	Consistent elicitation of cross-clade HIV-neutralizing responses achieved in guinea pigs after fusion peptide priming by repetitive envelope trimer boosting. PLoS ONE, 2019, 14, e0215163.	2.5	41
32	Automated Design by Structure-Based Stabilization and Consensus Repair to Achieve Prefusion-Closed Envelope Trimers in a Wide Variety of HIV Strains. Cell Reports, 2020, 33, 108432.	6.4	32
33	Accurate Prediction for Antibody Resistance of Clinical HIV-1 Isolates. Scientific Reports, 2019, 9, 14696.	3.3	30
34	Improvement of antibody functionality by structure-guided paratope engraftment. Nature Communications, 2019, 10, 721.	12.8	27
35	VRC34-Antibody Lineage Development Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing Lineage. Cell Host and Microbe, 2020, 27, 531-543.e6.	11.0	23
36	Mutational fitness landscapes reveal genetic and structural improvement pathways for a vaccine-elicited HIV-1 broadly neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21

Gwo-Yu Chuang

#	Article	IF	CITATIONS
37	Immune Monitoring Reveals Fusion Peptide Priming to Imprint Cross-Clade HIV-Neutralizing Responses with a Characteristic Early B Cell Signature. Cell Reports, 2020, 32, 107981.	6.4	15
38	Isolation and Structure of an Antibody that Fully Neutralizes Isolate SIVmac239 Reveals Functional Similarity of SIV and HIV Glycan Shields. Immunity, 2019, 51, 724-734.e4.	14.3	13
39	Blocking α ₄ β ₇ integrin delays viral rebound in SHIV _{SF162P3} -infected macaques treated with anti-HIV broadly neutralizing antibodies. Science Translational Medicine, 2021, 13, .	12.4	11
40	Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies. Cell Reports, 2021, 37, 109922.	6.4	5
41	CRISPro: An Automated Pipeline for Protein Conformation Stabilization by Proline. Journal of Chemical Information and Modeling, 2018, 58, 2189-2192.	5.4	4
42	Extended antibody-framework-to-antigen distance observed exclusively with broad HIV-1-neutralizing antibodies recognizing glycan-dense surfaces. Nature Communications, 2021, 12, 6470.	12.8	3
43	GLYCO: a tool to quantify glycan shielding of glycosylated proteins. Bioinformatics, 2022, 38, 1152-1154.	4.1	2
44	<i>C</i> ₃ -Symmetric Aromatic Core of Griffithsin Is Essential for Potent Anti-HIV Activity. ACS Chemical Biology, 2022, 17, 1450-1459.	3.4	1