
Liang Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7360017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Bioresource Technology, 2016, 203, 287-294.	9.6	134
2	Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1. Bioresource Technology, 2013, 138, 307-313.	9.6	109
3	Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes. Bioresource Technology, 2017, 233, 21-29.	9.6	95
4	Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1. Bioresource Technology, 2014, 158, 321-328.	9.6	76
5	Aerobic decolorization and degradation of Acid Red B by a newly isolated Pichia sp. TCL. Journal of Hazardous Materials, 2012, 223-224, 31-38.	12.4	66
6	Dynamics of microbial community for X-3B wastewater decolorization coping with high-salt and metal ions conditions. Bioresource Technology, 2009, 100, 3003-3009.	9.6	60
7	Identification and Characteristics of A Novel Salt-Tolerant Exiguobacterium sp. for Azo Dyes Decolorization. Applied Biochemistry and Biotechnology, 2009, 159, 728-738.	2.9	37
8	Reactor performance and microbial community dynamics during aerobic degradation and detoxification of Acid Red B with activated sludge bioaugmented by a yeast Candida tropicalis TL-F1 in MBR. International Biodeterioration and Biodegradation, 2015, 104, 149-156.	3.9	29
9	Degradation and detoxification of azo dyes by a salt-tolerant yeast Cyberlindnera samutprakarnensis S4 under high-salt conditions. World Journal of Microbiology and Biotechnology, 2018, 34, 131.	3.6	29
10	Enhanced azo dye biodegradation performance and halotolerance of Candida tropicalis SYF-1 by static magnetic field (SMF). Bioresource Technology, 2020, 295, 122283.	9.6	28
11	Improving Azo Dye Decolorization Performance and Halotolerance of Pichia occidentalis A2 by Static Magnetic Field and Possible Mechanisms Through Comparative Transcriptome Analysis. Frontiers in Microbiology, 2020, 11, 712.	3.5	24
12	Performance and microbial community dynamics of electricity-assisted sequencing batch reactor (SBR) for treatment of saline petrochemical wastewater. Environmental Science and Pollution Research, 2017, 24, 17556-17565.	5.3	20
13	Simultaneously enhanced treatment efficiency of simulated hypersaline azo dye wastewater and membrane antifouling by a novel static magnetic field membrane bioreactor (SMFMBR). Science of the Total Environment, 2022, 821, 153452.	8.0	20
14	Magnetically stimulated azo dye biodegradation by a newly isolated osmo-tolerant Candida tropicalis A1 and transcriptomic responses. Ecotoxicology and Environmental Safety, 2021, 209, 111791.	6.0	19
15	Biodegradation and Detoxification of Azo Dyes by a Newly Isolated Halotolerant Yeast <i>Candida tropicalis</i> SYF-1. Environmental Engineering Science, 2019, 36, 999-1010.	1.6	18
16	Performance of the biological aerated filter bioaugmented by a yeast Magnusiomyces ingens LH-F1 for treatment of Acid Red B and microbial community dynamics. World Journal of Microbiology and Biotechnology, 2017, 33, 39.	3.6	13
17	Aerobic Decolorization and Degradation of Acid Orange G (AOG) by Suspended Growing Cells and Immobilized Cells of a Yeast Strain Candida tropicalis TL-F1. Applied Biochemistry and Biotechnology, 2014, 174, 1651-1667.	2.9	12
18	Enhanced Biodecolorization Performance of Azo Dyes Under High-Salt Conditions by a Marine Microbial Community Exposed to Moderate-Intensity Static Magnetic Field. Environmental Engineering Science, 2019, 36, 186-196.	1.6	8

LIANG TAN

#	Article	IF	CITATIONS
19	Combined enhancement effects of static magnetic field (SMF) and a yeast Candida tropicalis SYFâ€1 on continuous treatment of Acid Red B by activated sludge under hypersaline conditions. Journal of Chemical Technology and Biotechnology, 2020, 95, 840-849.	3.2	8
20	Continuous treatment of Acid Red B with activated sludge bioaugmented by a yeast Candida tropicalis TL-F1 and microbial community dynamics. Water Science and Technology, 2017, 76, 2979-2987.	2.5	6
21	Continuously Biodegrading High Concentration of Acid Red B Under Hypersaline Conditions in a Membrane Bioreactor Bioaugmented by a Halotolerant Yeast <i>Pichia occidentalis</i> G1 and Microbial Community Dynamics. Environmental Engineering Science, 2019, 36, 1412-1420.	1.6	6
22	Coâ€enhanced activated sludge system by static magnetic field and two halotolerant yeasts for azo dye treatment. Water Environment Research, 2020, 92, 2095-2104.	2.7	5
23	Efficient decolorization and detoxification of azo dyes by a halotolerant yeast Meyerozyma guilliermondii A3 with relatively low external carbon source. Journal of Water Process Engineering, 2022, 47, 102810.	5.6	5
24	Microbial community shifts in sequencing batch reactors for azo dye treatment. Pure and Applied Chemistry, 2010, 82, 299-306.	1.9	4