Zhi-Gang Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/735957/publications.pdf

Version: 2024-02-01

126858 138417 3,753 80 33 58 citations h-index g-index papers 81 81 81 4053 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chiral-Induced Ultrathin Covalent Organic Frameworks Nanosheets with Tunable Circularly Polarized Luminescence. Journal of the American Chemical Society, 2022, 144, 7245-7252.	6.6	52
2	Helical copper-porphyrinic framework nanoarrays for highly efficient CO2 electroreduction. Science China Materials, 2022, 65, 1269-1275.	3. 5	11
3	Chiral Metal–Organic Cluster Induced High Circularly Polarized Luminescence of Metal–Organic Framework Thin Film. Advanced Functional Materials, 2022, 32, .	7.8	23
4	Optimizing Photodetectors in Two-Dimensional Metal-Metalloporphyrinic Framework Thin Films. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33548-33554.	4.0	13
5	Epitaxial growth of prussian blue analogue derived NiFeP thin film for efficient electrocatalytic hydrogen evolution reaction. Journal of Solid State Chemistry, 2021, 293, 121779.	1.4	14
6	Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chemical Science, 2021, 12, 12346-12352.	3.7	11
7	A metal-porphyrinic framework film as an efficient optical limiting layer in an electro-optical switchable device. Chemical Communications, 2021, 57, 10166-10169.	2.2	8
8	Step by Step Bisacrificial Templates Growth of Bimetallic Sulfide QDsâ€Attached MOF Nanosheets for Nonlinear Optical Limiting. Advanced Optical Materials, 2021, 9, 2002072.	3.6	25
9	Oriented Growth of Inâ€Oxo Chain Based Metalâ€Porphyrin Framework Thin Film for Highâ€Sensitive Photodetector. Advanced Science, 2021, 8, 2100548.	5.6	23
10	Interpenetrated Metal-Porphyrinic Framework for Enhanced Nonlinear Optical Limiting. Journal of the American Chemical Society, 2021, 143, 17162-17169.	6.6	85
11	Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem, 2021, 3, 100065.	10.1	25
12	Oriented Assembly of 2D Metal-Pyridylporphyrinic Framework Films for Giant Nonlinear Optical Limiting. Nano Letters, 2021, 21, 10012-10018.	4.5	28
13	Novel Third-Order Nonlinear Optical Materials with Craig-Möbius Aromaticity. Journal of Physical Chemistry Letters, 2021, 12, 11784-11789.	2.1	13
14	Auto-controlled fabrication of a metal-porphyrin framework thin film with tunable optical limiting effects. Chemical Science, 2020, 11, 1935-1942.	3.7	68
15	Epitaxial Growth of Highly Transparent Metal–Porphyrin Framework Thin Films for Efficient Bifacial Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 1078-1083.	4.0	33
16	Host–Guest Thin Films by Confining Ultrafine Pt/C QDs into Metalâ€Organic Frameworks for Highly Efficient Hydrogen Evolution. Small, 2020, 16, e2005111.	5. 2	39
17	N-Heterocyclic Carbene as a Surface Platform for Assembly of Homochiral Metal–Organic Framework Thin Films in Chiral Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38357-38364.	4.0	20
18	Templated synthesis of cobalt subnanoclusters dispersed N/C nanocages from COFs for highly-efficient oxygen reduction reaction. Chemical Engineering Journal, 2020, 401, 126149.	6.6	40

#	Article	IF	Citations
19	Vapor-assisted epitaxial growth of porphyrin-based MOF thin film for nonlinear optical limiting. Science China Chemistry, 2020, 63, 1059-1065.	4.2	28
20	Surface-coordinated metal–organic framework thin films (SURMOFs) for electrocatalytic applications. Nanoscale, 2020, 12, 12712-12730.	2.8	35
21	Layer-by-layer spray preparation of SURMOF and their applications. Scientia Sinica Chimica, 2020, 50, 857-866.	0.2	1
22	Liquid phase epitaxial layer by layer dipping assembly of metal-organic framework thin films and their physical property. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 126801.	0.2	2
23	Liquid-Phase Epitaxial Growth of Azapyrene-Based Chiral Metal–Organic Framework Thin Films for Circularly Polarized Luminescence. ACS Applied Materials & Interfaces, 2019, 11, 31421-31426.	4.0	53
24	A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18519-18528.	5.2	92
25	Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 245, 1-9.	10.8	128
26	Epitaxial growth and applications of oriented metal–organic framework thin films. Coordination Chemistry Reviews, 2019, 378, 513-532.	9.5	122
27	Electrooxidation of Pd–Cu NP loaded porous carbon derived from a Cu-MOF. RSC Advances, 2018, 8, 1803-1807.	1.7	15
28	Hollow Cu–TiO ₂ /C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 7175-7181.	5.2	74
29	Synthesis and Applications of Homochiral Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 411-439.	0.3	0
30	Helical carbon tubes derived from epitaxial Cu-MOF coating on textile for enhanced supercapacitor performance. Dalton Transactions, 2018, 47, 5558-5563.	1.6	32
31	Single molecule magnetic behaviour in lanthanide naphthalenesulfonate complexes. Dalton Transactions, 2018, 47, 17349-17356.	1.6	16
32	van der Waals Epitaxial Growth of 2D Metal–Porphyrin Framework Derived Thin Films for Dyeâ€Sensitized Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800985.	1.9	34
33	Insight into Fe(Salen) Encapsulated Co-Porphyrin Framework Derived Thin Film for Efficient Oxygen Evolution Reaction. Crystal Growth and Design, 2018, 18, 7150-7157.	1.4	18
34	Chiral and kryptoracemic Dy(<scp>iii</scp>) complexes with field-induced single molecule magnet behavior. CrystEngComm, 2018, 20, 4582-4589.	1.3	6
35	Synthesis of homochiral zeolitic metal–organic frameworks with amino acid and tetrazolates for chiral recognition. RSC Advances, 2017, 7, 4872-4875.	1.7	34
36	Epitaxial Growth of Oriented Metalloporphyrin Network Thin Film for Improved Selectivity of Volatile Organic Compounds. Small, 2017, 13, 1604035.	5.2	32

#	Article	IF	CITATIONS
37	Facile Synthesis of Metal-Loaded Porous Carbon Thin Films via Carbonization of Surface-Mounted Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 3526-3531.	1.9	21
38	Epitaxial Growth of MOF Thin Film for Modifying the Dielectric Layer in Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7259-7264.	4.0	56
39	MOFâ€Templated Synthesis of Ultrasmall Photoluminescent Carbonâ€Nanodot Arrays for Optical Applications. Angewandte Chemie - International Edition, 2017, 56, 6853-6858.	7.2	179
40	MOFâ€Templated Synthesis of Ultrasmall Photoluminescent Carbonâ€Nanodot Arrays for Optical Applications. Angewandte Chemie, 2017, 129, 6957-6962.	1.6	17
41	Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis. Nanoscale, 2017, 9, 7734-7738.	2.8	15
42	Surface-mounted MOF templated fabrication of homochiral polymer thin film for enantioselective adsorption of drugs. Chemical Communications, 2017, 53, 1470-1473.	2.2	41
43	Epitaxial encapsulation of homodispersed CeO ₂ in a cobalt–porphyrin network derived thin film for the highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 20126-20130.	5.2	36
44	Chiral chemistry of metal–camphorate frameworks. Chemical Society Reviews, 2016, 45, 3122-3144.	18.7	229
45	A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28737-28742.	4.0	132
46	Chiral Chemistry of Homochiral Porous Thin Film with Different Growth Orientations. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27332-27338.	4.0	23
47	Liquid Phase Epitaxial Growth and Optical Properties of Photochromic Guest-Encapsulated MOF Thin Film. Crystal Growth and Design, 2016, 16, 5487-5492.	1.4	35
48	Chiral Porous Metacrystals: Employing Liquid-Phase Epitaxy to Assemble Enantiopure Metal–Organic Nanoclusters into Molecular Framework Pores. ACS Nano, 2016, 10, 977-983.	7.3	83
49	Fullerene-like Polyoxotitanium Cage with High Solution Stability. Journal of the American Chemical Society, 2016, 138, 2556-2559.	6.6	183
50	Liquid-phase epitaxial growth of a homochiral MOF thin film on poly(<scp>I</scp> -DOPA) functionalized substrate for improved enantiomer separation. Chemical Communications, 2016, 52, 772-775.	2.2	60
51	Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type. Applied Physics Letters, 2015, 107, .	1.5	57
52	Transparent films of metal-organic frameworks for optical applications. Microporous and Mesoporous Materials, 2015, 211, 82-87.	2.2	114
53	Liquid-Phase Epitaxy Effective Encapsulation of Lanthanide Coordination Compounds into MOF Film with Homogeneous and Tunable White-Light Emission. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28585-28590.	4.0	45
54	Planar-chiral building blocks for metal–organic frameworks. Chemical Communications, 2015, 51, 4796-4798.	2.2	52

#	Article	IF	Citations
55	Enantioselective adsorption in homochiral metal–organic frameworks: the pore size influence. Chemical Communications, 2015, 51, 8998-9001.	2.2	74
56	Monolithic, Crystalline MOF Coating: An Excellent Patterning and Photoresist Material. ChemNanoMat, 2015, 1, 338-345.	1.5	33
57	A robust porous pillar-chained Cd-framework with selective sorption for CO2 and guest-driven tunable luminescence. CrystEngComm, 2014, 16, 3848.	1.3	18
58	The surface barrier phenomenon at the loading of metal-organic frameworks. Nature Communications, 2014, 5, 4562.	5.8	165
59	Nanoporous Designer Solids with Huge Lattice Constant Gradients: Multiheteroepitaxy of Metal–Organic Frameworks. Nano Letters, 2014, 14, 1526-1529.	4.5	130
60	Oriented Circular Dichroism Analysis of Chiral Surfaceâ€Anchored Metal–Organic Frameworks Grown by Liquidâ€Phase Epitaxy and upon Loading with Chiral Guest Compounds. Chemistry - A European Journal, 2014, 20, 9879-9882.	1.7	57
61	Construction of one pH-independent 3-D pillar-layer lead-organic framework containing tetrazole-1-acetic acid. Inorganic Chemistry Communication, 2013, 27, 22-25.	1.8	22
62	Oneâ€, Two†and Threeâ€Dimensional 3dâ€4f Heterometal Complexes Constructed from Pyridineâ€2,3â€dicarboxylic Acid. European Journal of Inorganic Chemistry, 2012, 2012, 5562-5570.	1.0	27
63	Efficient synthesis and characterization of the low dimensional heteronuclear complexes with a N2O2-donor Schiff base ligand. Inorganica Chimica Acta, 2012, 392, 177-183.	1.2	9
64	1-D to 3-D lanthanide coordination polymers constructed from 5-aminoisophthalic acid and oxalic acid. Inorganic Chemistry Communication, 2012, 23, 25-30.	1.8	18
65	Four <i>Ln</i> ^{III} â€Mg ^{II} Metal Organic Frameworks Containing Fanâ€like Helices and Independent [Mg(H ₂ O) ₆] ²⁺ Units. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 652-657.	0.6	7
66	Construction of Metal-Imidazole-Based Dicarboxylate Networks with Topological Diversity: Thermal Stability, Gas Adsorption, and Fluorescent Emission Properties. Crystal Growth and Design, 2012, 12, 2178-2186.	1.4	87
67	A Family of Three-Dimensional Lanthanide-Zinc Heterometal–Organic Frameworks from 4,5-Imidazoledicarboxylate and Oxalate. Crystal Growth and Design, 2011, 11, 2220-2227.	1.4	92
68	Construction of four 3d-4d/4d complexes based on salen-type schiff base ligands. CrystEngComm, 2011, 13, 6911.	1.3	34
69	Metal–Organic Frameworks with Achiral/Monochiral Nano-Channels. Crystal Growth and Design, 2011, 11, 2824-2828.	1.4	33
70	A new 3D fluorescent lanthanide-organic framework containing helical chains and zigzag layers from mixed carboxylate ligands. Inorganic Chemistry Communication, 2011, 14, 68-71.	1.8	14
71	One new 2D cadmium-organic framework containing 2,4′-biphenyldicarboxylate ligand. Inorganic Chemistry Communication, 2011, 14, 247-250.	1.8	11
72	2D pillar-chained 3d-4f heterometallic coordination polymers based on 2,4′-biphenyldicarboxylate. Inorganic Chemistry Communication, 2011, 14, 453-457.	1.8	9

#	Article	lF	CITATION
73	Construction of one 2D samarium-organic framework based on 2,4′-biphenyldicarboxylate. Inorganic Chemistry Communication, 2011, 14, 458-462.	1.8	15
74	The first Mn–Zn heterometallic dinuclear compound based on Schiff base ligand N, N′-bis(salicylidene)-1,3-diaminopropane. Inorganic Chemistry Communication, 2011, 14, 1228-1232.	1.8	15
75	Temperature-induced two copper (II) supramolecular isomers constructed from 2-ethyl-1H-imidazole-4, 5-dicarboxlylate. Inorganic Chemistry Communication, 2011, 14, 1479-1484.	1.8	23
76	A 2D pillar-layered coordination framework with meso-helix constructed from imidazole-4,5-dicarboxlylate and terephthalate. Inorganic Chemistry Communication, 2010, 13, 1439-1444.	1.8	18
77	Auxiliary Ligand-Dependent Assembly of Several Ni/Niâ^'Cd Compounds with N ₂ O ₂ Donor Tetradentate Symmetrical Schiff Base Ligand. Crystal Growth and Design, 2010, 10, 4987-4994.	1.4	25
78	Assembly of a Series of Trinuclear Zinc(II) Compounds with N ₂ O ₂ Donor Tetradentate Symmetrical Schiff Base Ligand. Crystal Growth and Design, 2010, 10, 4014-4022.	1.4	72
79	Conversion of nonporous helical cadmium organic framework to a porous form. Chemical Communications, 2010, 46, 5373.	2.2	66
80	Construction of Low-Dimensional Cadmium Compounds with N ₂ O/N ₂ S Donor Tridentate Schiff Base Ligands. Crystal Growth and Design, 2009, 9, 3776-3788.	1.4	48