Flavio V Meirelles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7358935/publications.pdf Version: 2024-02-01

	126708	168136
4,248	33	53
citations	h-index	g-index
191	191	4342
docs citations	times ranked	citing authors
	citations 191	4,248 33 citations h-index 191 191

#	Article	IF	CITATIONS
1	Cytoplasmic maturation of bovine oocytes: Structural and biochemical modifications and acquisition of developmental competence. Theriogenology, 2009, 71, 836-848.	0.9	236
2	Mitochondrial Genotype Segregation in a Mouse Heteroplasmic Lineage Produced by Embryonic Karyoplast Transplantation. Genetics, 1997, 145, 445-451.	1.2	150
3	Mitochondrial Genotype Segregation During Preimplantation Development in Mouse Heteroplasmic Embryos. Genetics, 1998, 148, 877-883.	1.2	115
4	The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. Journal of Dairy Science, 2011, 94, 2383-2392.	1.4	112
5	Single embryo and oocyte lipid fingerprinting by mass spectrometry. Journal of Lipid Research, 2010, 51, 1218-1227.	2.0	109
6	Complete Replacement of the Mitochondrial Genotype in a <i>Bos indicus</i> Calf Reconstructed by Nuclear Transfer to a <i>Bos taurus</i> Oocyte. Genetics, 2001, 158, 351-356.	1.2	109
7	Genome activation and developmental block in bovine embryos. Animal Reproduction Science, 2004, 82-83, 13-20.	0.5	95
8	Supplementation with small-extracellular vesicles from ovarian follicular fluid during in vitro production modulates bovine embryo development. PLoS ONE, 2017, 12, e0179451.	1.1	80
9	Genome-wide association analysis of feed intake and residual feed intake in Nellore cattle. BMC Genetics, 2014, 15, 21.	2.7	78
10	Unearthing the Roles of Imprinted Genes in the Placenta. Placenta, 2009, 30, 823-834.	0.7	76
11	Transmission of Mitochondrial DNA Diseases and Ways to Prevent Them. PLoS Genetics, 2010, 6, e1001066.	1.5	74
12	Placentation in cloned cattle: Structure and microvascular architecture. Theriogenology, 2007, 68, 604-617.	0.9	73
13	Developmental and Epigenetic Anomalies in Cloned Cattle. Reproduction in Domestic Animals, 2012, 47, 107-114.	0.6	63
14	Fatty Acid Binding Protein 3 And Transzonal Projections Are Involved In Lipid Accumulation During In Vitro Maturation Of Bovine Oocytes. Scientific Reports, 2017, 7, 2645.	1.6	62
15	Embryo Mitochondrial DNA Depletion Is Reversed During Early Embryogenesis in Cattle1. Biology of Reproduction, 2010, 82, 76-85.	1.2	58
16	The Infertility of Repeat-Breeder Cows During Summer Is Associated with Decreased Mitochondrial DNA and Increased Expression of Mitochondrial and Apoptotic Genes in Oocytes1. Biology of Reproduction, 2016, 94, 66.	1.2	57
17	The role of the PI3K-Akt signaling pathway in the developmental competence of bovine oocytes. PLoS ONE, 2017, 12, e0185045.	1.1	57
18	Is the American Zebu really Bos indicus?. Genetics and Molecular Biology, 1999, 22, 543-546.	0.6	55

#	Article	IF	CITATIONS
19	Modulation of Maternal Immune System During Pregnancy in the Cow. Reproduction in Domestic Animals, 2012, 47, 384-393.	0.6	53
20	Manipulation of the periovulatory sex steroidal milieu affects endometrial but not luteal gene expression in early diestrus Nelore cows. Theriogenology, 2014, 81, 861-869.	0.9	50
21	The interval between the emergence of pharmacologically synchronized ovarian follicular waves and ovum pickup does not significantly affect inÂvitro embryo production in Bos indicus, Bos taurus, and Bubalus bubalis. Theriogenology, 2015, 83, 385-393.	0.9	50
22	Association of SNPs on CAPN1 and CAST genes with tenderness in Nellore cattle. Genetics and Molecular Research, 2010, 9, 1431-1442.	0.3	47
23	Delivery of cloned offspring: experience in Zebu cattle (Bos indicus). Reproduction, Fertility and Development, 2010, 22, 88.	0.1	44
24	Pronounced Segregation of Donor Mitochondria Introduced by Bovine Ooplasmic Transfer to the Female Germ-Line1. Biology of Reproduction, 2010, 82, 563-571.	1.2	43
25	Protocols for obtainment and isolation of two mesenchymal stem cell sources in sheep. Acta Cirurgica Brasileira, 2011, 26, 267-273.	0.3	43
26	Reference Gene Selection for Gene Expression Analysis of Oocytes Collected from Dairy Cattle and Buffaloes during Winter and Summer. PLoS ONE, 2014, 9, e93287.	1.1	42
27	Loss of Methylation at H19 DMD Is Associated with Biallelic Expression and Reduced Development in Cattle Derived by Somatic Cell Nuclear Transfer1. Biology of Reproduction, 2011, 84, 947-956.	1.2	41
28	Treatment of Nuclear-Donor Cells or Cloned Zygotes with Chromatin-Modifying Agents Increases Histone Acetylation But Does Not Improve Full-Term Development of Cloned Cattle. Cellular Reprogramming, 2012, 14, 235-247.	0.5	41
29	Estrous cycle impacts microRNA content in extracellular vesicles that modulate bovine cumulus cell transcripts during in vitro maturationâ€. Biology of Reproduction, 2020, 102, 362-375.	1.2	41
30	Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality. Genetics and Molecular Research, 2015, 14, 53-62.	0.3	40
31	Sperm-borne miR-216b modulates cell proliferation during early embryo development via K-RAS. Scientific Reports, 2019, 9, 10358.	1.6	38
32	Involvement of miRNAs and Cell-Secreted Vesicles in Mammalian Ovarian Antral Follicle Development. Reproductive Sciences, 2015, 22, 1474-1483.	1.1	36
33	Mitochondrial genotype segregation and effects during mammalian development: Applications to biotechnology. Theriogenology, 2000, 53, 35-46.	0.9	34
34	Generation of LIF-independent induced pluripotent stem cells from canine fetal fibroblasts. Theriogenology, 2017, 92, 75-82.	0.9	34
35	Development to Term of Cloned Cattle Derived from Donor Cells Treated with Valproic Acid. PLoS ONE, 2014, 9, e101022.	1.1	34
36	Mitochondrial DNA Copy Number, a Marker of Viability for Oocytes1. Biology of Reproduction, 2010, 83, 1-2.	1.2	33

#	Article	IF	CITATIONS
37	Cellular and extracellular vesicular origins of miRNAs within the bovine ovarian follicle. Reproduction in Domestic Animals, 2017, 52, 1036-1045.	0.6	33
38	Number of oocytes retrieved per donor during OPU and its relationship with in vitro embryo production and field fertility following embryo transfer. Animal Reproduction, 2017, 14, 635-644.	0.4	33
39	Identification of three distinguishable phenotypes in golden retriever muscular dystrophy. Genetics and Molecular Research, 2009, 8, 389-396.	0.3	33
40	Ooplast-mediated developmental rescue of bovine oocytes exposed to ethidium bromide. Reproductive BioMedicine Online, 2011, 22, 172-183.	1.1	32
41	Transgenic bovine as bioreactors: Challenges and perspectives. Bioengineered, 2016, 7, 123-131.	1.4	32
42	Reproductive Stem Cell Differentiation: Extracellular Matrix, Tissue Microenvironment, and Growth Factors Direct the Mesenchymal Stem Cell Lineage Commitment. Reproductive Sciences, 2013, 20, 1137-1143.	1.1	31
43	Epigenetic consequences of artificial reproductive technologies to the bovine imprinted genes SNRPN, H19/IGF2, and IGF2R. Frontiers in Genetics, 2015, 6, 58.	1.1	31
44	Mechanism of Trypanosoma cruzi death induced by Cratylia mollis seed lectin. Journal of Bioenergetics and Biomembranes, 2010, 42, 69-78.	1.0	30
45	Low levels of exosomal-miRNAs in maternal blood are associated with early pregnancy loss in cloned cattle. Scientific Reports, 2017, 7, 14319.	1.6	30
46	Isolation and characterization of mesenchymal stem cells from the yolk sacs of bovine embryos. Theriogenology, 2015, 84, 887-898.	0.9	29
47	Vitamin E prevents cell death induced by mild oxidative stress in chicken skeletal muscle cells. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2005, 141, 225-240.	1.3	28
48	In vitro maturation impacts cumulus–oocyte complex metabolism and stress in cattle. Reproduction, 2017, 154, 881-893.	1.1	27
49	MitofusinÂ1 is required for oocyte growth and communication with follicular somatic cells. FASEB Journal, 2020, 34, 7644-7660.	0.2	27
50	Serum-Starved Apoptotic Fibroblasts Reduce Blastocyst Production but Enable Development to Term after SCNT in Cattle. Cloning and Stem Cells, 2009, 11, 565-573.	2.6	26
51	Protein synthesis and degradation gene SNPs related to feed intake, feed efficiency, growth, and ultrasound carcass traits in Nellore cattle. Genetics and Molecular Research, 2013, 12, 2923-2936.	0.3	26
52	Expression of PLIN2 and PLIN3 during oocyte maturation and early embryo development in cattle. Theriogenology, 2014, 81, 326-331.	0.9	26
53	Antioxidant responses and deregulation of epigenetic writers and erasers link oxidative stress and DNA methylation in bovine blastocysts. Molecular Reproduction and Development, 2017, 84, 1296-1305.	1.0	26
54	Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle. Genetics and Molecular Research, 2011, 10, 2057-2064.	0.3	26

#	Article	IF	CITATIONS
55	Imprinted gene expression in in vivo- and in vitro-produced bovine embryos and chorio-allantoic membranes. Genetics and Molecular Research, 2009, 8, 76-85.	0.3	26
56	Therapeutic treatments of mtDNA diseases at the earliest stages of human development. Mitochondrion, 2011, 11, 820-828.	1.6	25
57	Viable Calves Produced by Somatic Cell Nuclear Transfer Using Meiotic-Blocked Oocytes. Cellular Reprogramming, 2011, 13, 419-429.	0.5	25
58	Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation. Stem Cells and Cloning: Advances and Applications, 2014, 7, 71.	2.3	25
59	Effects of polymorphisms of LHR and FSHR genes on sexual precocity in a Bos taurus x Bos indicusbeef composite population. Genetics and Molecular Research, 2008, 7, 243-251.	0.3	25
60	Assembly of somatic histone H1 onto chromatin during bovine early embryogenesis. The Journal of Experimental Zoology, 1995, 273, 317-326.	1.4	24
61	Novel Flow Cytometry Analyses of Boar Sperm Viability: Can the Addition of Whole Sperm-Rich Fraction Seminal Plasma to Frozen-Thawed Boar Sperm Affect It?. PLoS ONE, 2016, 11, e0160988.	1.1	24
62	Neurons-derived extracellular vesicles promote neural differentiation of ADSCs: a model to prevent peripheral nerve degeneration. Scientific Reports, 2019, 9, 11213.	1.6	24
63	Development of bovine embryos derived from reproductive techniques. Reproduction, Fertility and Development, 2013, 25, 907.	0.1	23
64	The Influence of Morphology, Follicle Size and Bclâ $\in 2$ and Bax Transcripts on the Developmental Competence of Bovine Oocytes. Reproduction in Domestic Animals, 2014, 49, 576-583.	0.6	23
65	Real-Time PCR Quantification of Heteroplasmy in a Mouse Model with Mitochondrial DNA of C57BL/6 and NZB/BINJ Strains. PLoS ONE, 2015, 10, e0133650.	1.1	23
66	Parthenogenesis and Human Assisted Reproduction. Stem Cells International, 2016, 2016, 1-8.	1.2	23
67	Use of strontium in the activation of bovine oocytes reconstructed by somatic cell nuclear transfer. Zygote, 2005, 13, 295-302.	0.5	22
68	Seminal plasma arising from the whole boar sperm-rich fraction increases the stability of sperm membrane after thawing1,2. Journal of Animal Science, 2016, 94, 1906-1912.	0.2	22
69	Stem cells on regenerative and reproductive science in domestic animals. Veterinary Research Communications, 2019, 43, 7-16.	0.6	22
70	Association of single nucleotide polymorphisms with carcass traits in Nellore cattle. Genetics and Molecular Research, 2009, 8, 1360-1366.	0.3	22
71	Messenger RNAs in metaphase II oocytes correlate with successful embryo development to the blastocyst stage. Zygote, 2014, 22, 69-79.	0.5	21
72	Generation of induced pluripotent stem cells from large domestic animals. Stem Cell Research and Therapy, 2020, 11, 247.	2.4	21

#	Article	IF	CITATIONS
73	Somatic cell nuclear transfer is associated with altered expression of angiogenic factor systems in bovine placentomes at term. Genetics and Molecular Research, 2010, 9, 309-323.	0.3	21
74	The Kinetics of Donor Cell mtDNA in Embryonic and Somatic Donor Cell-Derived Bovine Embryos. Cloning and Stem Cells, 2007, 9, 618-629.	2.6	20
75	Evolution of Suiform Aromatases: Ancestral Duplication with Conservation of Tissue-Specific Expression in the Collared Peccary (Pecari tayassu). Journal of Molecular Evolution, 2007, 65, 403-412.	0.8	20
76	High Bcl-2/Bax ratio in Walker tumor cells protects mitochondria but does not prevent H2O2-induced apoptosis via calcineurin pathways. Journal of Bioenergetics and Biomembranes, 2007, 39, 186-194.	1.0	20
77	<i>In vitro</i> maturation alters gene expression in bovine oocytes. Zygote, 2016, 24, 624-633.	0.5	20
78	Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos. Scientific Reports, 2018, 8, 13766.	1.6	20
79	Ovarian follicular dynamics, progesterone concentrations, pregnancy rates and transcriptional patterns in Bos indicus females with a high or low antral follicle count. Scientific Reports, 2020, 10, 19557.	1.6	20
80	Contributions from the ovarian follicular environment to oocyte function. Animal Reproduction, 2018, 15, 261-270.	0.4	20
81	Intrafollicular barriers and cellular interactions during ovarian follicle development. Animal Reproduction, 2019, 16, 485-496.	0.4	20
82	Mitochondrial genotype segregation and the bottleneck. Reproductive BioMedicine Online, 2002, 4, 248-255.	1.1	19
83	Global poly(A) mRNA expression profile measured in individual bovine oocytes and cleavage embryos. Zygote, 2008, 16, 29-38.	0.5	19
84	Changes in Oviductal Cells and Small Extracellular Vesicles miRNAs in Pregnant Cows. Frontiers in Veterinary Science, 2021, 8, 639752.	0.9	19
85	Oocyte mitochondria: role on fertility and disease transmission. Animal Reproduction, 2018, 15, 231-238.	0.4	19
86	Influence of Chinese breeds on pork quality of commercial pig lines. Genetics and Molecular Research, 2010, 9, 727-733.	0.3	18
87	Fetal-Maternal Interactions in the Synepitheliochorial Placenta Using the eGFP Cloned Cattle Model. PLoS ONE, 2013, 8, e64399.	1.1	18
88	Bovine NR113 gene polymorphisms and its association with feed efficiency traits in Nellore cattle. Meta Gene, 2014, 2, 206-217.	0.3	17
89	Developmental Block and Programmed Cell Death in Bos indicus Embryos: Effects of Protein Supplementation Source and Developmental Kinetics. PLoS ONE, 2015, 10, e0119463.	1.1	17
90	A new topology of ACBP from Moniliophthora perniciosa. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 115-123.	1.1	16

#	Article	IF	CITATIONS
91	Association of single nucleotide polymorphisms in the bovine leptin and leptin receptor genes with growth and ultrasound carcass traits in Nellore cattle. Genetics and Molecular Research, 2012, 11, 3721-3728.	0.3	16
92	Generation and miRNA Characterization of Equine Induced Pluripotent Stem Cells Derived from Fetal and Adult Multipotent Tissues. Stem Cells International, 2019, 2019, 1-15.	1.2	16
93	Oxygen tension modulates extracellular vesicles and its miRNA contents in bovine embryo culture medium. Molecular Reproduction and Development, 2019, 86, 1067-1080.	1.0	16
94	Improved Production of Genetically Modified Fetuses with Homogeneous Transgene Expression After Transgene Integration Site Analysis and Recloning in Cattle. Cellular Reprogramming, 2011, 13, 29-36.	0.5	15
95	Cumulus-oocyte interactions and programmed cell death in bovine embryos produced inÂvitro. Theriogenology, 2019, 126, 81-87.	0.9	15
96	β-casein gene expression by in vitro cultured bovine mammary epithelial cells derived from developing mammary glands. Genetics and Molecular Research, 2011, 10, 604-614.	0.3	14
97	<i>TAX</i> -mRNA-Carrying Exosomes from Human T Cell Lymphotropic Virus Type 1-Infected Cells Can Induce Interferon-Gamma Production <i>In Vitro</i> . AIDS Research and Human Retroviruses, 2018, 34, 1075-1082.	0.5	14
98	Bos indicus or Bos taurus mitochondrial DNA - comparison of productive and reproductive breeding values in a Guzerat dairy herd. Genetics and Molecular Research, 2008, 7, 592-602.	0.3	14
99	Single nucleotide polymorphisms in the bovine genome are associated with the number of oocytes collected during ovum pick up. Animal Reproduction Science, 2012, 134, 141-149.	0.5	13
100	Rabbit olfactory stem cells. Isolation protocol and characterization. Acta Cirurgica Brasileira, 2016, 31, 59-66.	0.3	13
101	Edition of TFAM gene by CRISPR/Cas9 technology in bovine model. PLoS ONE, 2019, 14, e0213376.	1.1	13
102	Catalytic inhibition of H3K9me2 writers disturbs epigenetic marks during bovine nuclear reprogramming. Scientific Reports, 2020, 10, 11493.	1.6	12
103	Lipid profile of extracellular vesicles and their relationship with bovine oocyte developmental competence: New players in intra follicular cell communication. Theriogenology, 2021, 174, 1-8.	0.9	12
104	Gene expression in placentation of farm animals: An overview of gene function during development. Theriogenology, 2011, 76, 589-597.	0.9	11
105	Vascularization and VEGF expression altered in bovine yolk sacs from IVF and NT technologies. Theriogenology, 2017, 87, 290-297.	0.9	11
106	Steroidal Regulation of Oviductal microRNAs Is Associated with microRNA-Processing in Beef Cows. International Journal of Molecular Sciences, 2021, 22, 953.	1.8	11
107	Xenooplasmic Transfer between Buffalo and Bovine Enables Development of Homoplasmic Offspring. Cellular Reprogramming, 2010, 12, 231-236.	0.5	10
108	Vascular Alterations Underlie Developmental Problems Manifested in Cloned Cattle before or after Birth. PLoS ONE, 2015, 10, e0106663.	1.1	10

#	Article	IF	CITATIONS
109	Characterization of putative haematopoietic cells from bovine yolk sac. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1132-1140.	1.3	10
110	Distinct features of rabbit and human adipose-derived mesenchymal stem cells: implications for biotechnology and translational research. Stem Cells and Cloning: Advances and Applications, 2018, Volume 11, 43-54.	2.3	10
111	Small extracellular vesicles derived from in vivo―or in vitroâ€produced bovine blastocysts have different miRNAs profiles—Implications for embryoâ€maternal recognition. Molecular Reproduction and Development, 2021, 88, 628-643.	1.0	10
112	Cysticercosis in experimentally and naturally infected pigs: parasitological and immunological diagnosis. Pesquisa Veterinaria Brasileira, 2012, 32, 297-302.	0.5	10
113	Messenger RNA expression of Pabpnl1 and Mbd3l2 genes in oocytes and cleavage embryos. Fertility and Sterility, 2010, 93, 2507-2512.	0.5	9
114	The use of parthenotegenetic and IVF bovine blastocysts as a model for the creation of human embryonic stem cells under defined conditions. Journal of Assisted Reproduction and Genetics, 2012, 29, 1039-1043.	1.2	9
115	Effects of long-term in vitro culturing of transgenic bovine donor fibroblasts on cell viability and in vitro developmental potential after nuclear transfer. In Vitro Cellular and Developmental Biology - Animal, 2013, 49, 250-259.	0.7	9
116	Mitochondrial DNA dynamics during in vitro culture and pluripotency induction of a bovine RhoO cell line. Genetics and Molecular Research, 2015, 14, 14093-14104.	0.3	9
117	MAC-T Cells as a Tool to Evaluate Lentiviral Vector Construction Targeting Recombinant Protein Expression in Milk. Animal Biotechnology, 2015, 26, 136-142.	0.7	9
118	Fetal sex alters maternal anti-Mullerian hormone during pregnancy in cattle. Animal Reproduction Science, 2017, 186, 85-92.	0.5	9
119	Cleaning cassava genotypes infected with cassava frogskin disease via in vitro shoot tip culture. Genetics and Molecular Research, 2017, 16, .	0.3	9
120	Increase in mitochondrial DNA quantity and impairment of oxidative phosphorylation in bovine fibroblast cells treated with ethidium bromide for 15 passages in culture. Genetics and Molecular Research, 2006, 5, 55-62.	0.3	9
121	Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning. Genetics and Molecular Research, 2013, 12, 3675-3688.	0.3	8
122	Calcium potentiates the effect of estradiol on PGF2α production in the bovine endometrium. Journal of Animal Science and Biotechnology, 2014, 5, 25.	2.1	8
123	Characterization of post-edited cells modified in the TFAM gene by CRISPR/Cas9 technology in the bovine model. PLoS ONE, 2020, 15, e0235856.	1.1	8
124	Extracellular vesicles and its advances in female reproduction. Animal Reproduction, 2019, 16, 31-38.	0.4	8
125	Leptin and hypothalamic gene expression in early- and late-maturing Bos indicus Nellore heifers. Genetics and Molecular Biology, 2008, 31, 657-664.	0.6	7
126	Canine Fibroblasts Expressing Human Transcription Factors: What is in the Route for the Production of Canine Induced Pluripotent Stem Cells. Reproduction in Domestic Animals, 2012, 47, 84-87.	0.6	7

#	Article	IF	CITATIONS
127	Cytoplasmatic inheritance, epigenetics and reprogramming DNA as tools in animal breeding. Livestock Science, 2014, 166, 199-205.	0.6	7
128	Nuclear transfer alters placental gene expression and associated histone modifications of the placental-specific imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2) in cattle. Reproduction, Fertility and Development, 2017, 29, 458.	0.1	7
129	Gene silencing during development of in vitro-produced female bovine embryos. Genetics and Molecular Research, 2009, 8, 1116-1127.	0.3	7
130	Genetic characterization of European-Zebu composite bovine using RFLP markers. Genetics and Molecular Research, 2005, 4, 496-505.	0.3	7
131	Mitochondrial DNA single nucleotide polymorphism associated with weight estimated breeding values in Nelore cattle (Bos indicus). Genetics and Molecular Biology, 2007, 30, 1058-1063.	0.6	6
132	A retrospective model of oocyte competence: global mRNA and housekeeping transcripts are not associated with in vitro developmental outcome. Zygote, 2009, 17, 289-295.	0.5	6
133	Derivation and culture of putative parthenogenetic embryonic stem cells in new gelatin substrates modified with galactomannan. Macromolecular Research, 2014, 22, 1053-1058.	1.0	6
134	Cytokines in the grass, a lesson learnt: Measuring cytokines in plasma using multiple reaction monitoring mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8723.	0.7	6
135	Evidence of Selection Against Damaged Mitochondria During Early Embryogenesis in the Mouse. Frontiers in Genetics, 2020, 11, 762.	1.1	6
136	Differential gene expression and developmental competence in <i>in vitro</i> produced bovine embryos. Zygote, 2012, 20, 281-290.	0.5	5
137	Plasma Steroid Dynamics in Late- and Near-term Naturally and Artificially Conceived Bovine Pregnancies as Elucidated by Multihormone High-resolution LC-MS/MS. Endocrinology, 2014, 155, 5011-5023.	1.4	5
138	Genotypic and allelic frequencies of gene polymorphisms associated with meat tenderness in Nellore beef cattle. Genetics and Molecular Research, 2017, 16, .	0.3	5
139	In vitro identification of a stem cell population from canine hair follicle bulge region. Tissue and Cell, 2018, 50, 43-50.	1.0	5
140	Absence of seminal plasma from sperm-rich fraction decreases boar sperm quality characteristics during the course of liquid storage. Animal Reproduction Science, 2018, 198, 20-26.	0.5	5
141	Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis. Molecular Human Reproduction, 2020, 26, 938-952.	1.3	5
142	Characterization of histone lysine βâ€hydroxybutyrylation in bovine tissues, cells, and cumulus–oocyte complexes. Molecular Reproduction and Development, 2022, 89, 375-398.	1.0	5
143	Nuclear Transfer with Apoptotic Bovine Fibroblasts: Can Programmed Cell Death Be Reprogrammed?. Cellular Reprogramming, 2012, 14, 217-224.	0.5	4
144	Effect of POU5F1 Expression Level in Clonal Subpopulations of Bovine Fibroblasts Used as Nuclear Donors for Somatic Cell Nuclear Transfer. Cellular Reprogramming, 2017, 19, 294-301.	0.5	4

#	Article	IF	CITATIONS
145	Resiliency of equid H19 imprint to somatic cell reprogramming by oocyte nuclear transfer and genetically induced pluripotencyâ€. Biology of Reproduction, 2020, 102, 211-219.	1.2	4
146	In Vitro Induction of Pluripotency from Equine Fibroblasts in 20% or 5% Oxygen. Stem Cells International, 2020, 2020, 1-16.	1.2	4
147	Effect of OPU interval and bST treatment on embryo production in buffalo. Italian Journal of Animal Science, 2007, 6, 766-768.	0.8	3
148	Relation between tyrosine phosphorylation of the equine sperm surface proteins and acrosome reaction. Animal Reproduction Science, 2008, 107, 304-305.	0.5	3
149	Efeito do número da passagem e do gênero das células doadoras de núcleo no desenvolvimento de bovinos produzidos por transferência nuclear. Revista Brasileira De Zootecnia, 2010, 39, 2166-2173.	0.3	3
150	Achievements and perspectives in cloned and transgenic cattle production by nuclear transfer: influence of cell type, epigenetic status and new technology. Animal Reproduction, 2017, 14, 1003-1013.	0.4	3
151	Characterization of mitochondrial genotypes in the foundation herd of the Canchim beef cattle breed. Genetics and Molecular Research, 2009, 8, 261-267.	0.3	3
152	Generation of Primordial Germ Cell-like Cells from iPSCs Derived from Turner Syndrome Patients. Cells, 2021, 10, 3099.	1.8	3
153	Development and optimization of a fluorescent differential display PCR system for studying bovine embryo development in vitro. Genetics and Molecular Research, 2005, 4, 726-33.	0.3	3
154	Patologia de neonatos bovinos originados por meio da técnica de transferência nuclear de células somáticas: clonagem. Brazilian Journal of Veterinary Research and Animal Science, 2010, 47, 447.	0.2	2
155	Insights on bovine genetic engineering and cloning. Pesquisa Veterinaria Brasileira, 2013, 33, 113-118.	0.5	2
156	Single nucleotide polymorphisms in genes linked to ion transport and regulation of appetite and their associations with weight gain, feed efficiency and intake of Nellore cattle. Livestock Science, 2014, 165, 33-36.	0.6	2
157	Challenges and perspectives to enhance cattle production via in vitro techniques: focus on epigenetics and cell-secreted vesicles. Ciencia Rural, 2015, 45, 1879-1886.	0.3	2
158	Expression of tissue-specific imprinted gene tumor Suppressing Subtransferable Candidate 4 (TSSC4) is altered in placentae produced by nuclear transfer in cattle. Animal Reproduction Science, 2017, 187, 174-180.	0.5	2
159	Morphological and Molecular Analysis of In Vitro Tubular Structures from Bovine Yolk Sac-Derived MSCs. Stem Cells International, 2019, 2019, 1-10.	1.2	2
160	Caracterização das proteÃnas caveolinas -1 e -2 na placenta de conceptos bovinos clonados transgênicos. Pesquisa Veterinaria Brasileira, 2015, 35, 477-485.	0.5	2
161	Isolamento e cultivo de neurônios e neuroesferas de córtex cerebral aviar. Pesquisa Veterinaria Brasileira, 2013, 33, 45-50.	0.5	2
162	Extracellular vesicles and its advances in female reproduction. Animal Reproduction, 2020, 16, 31-38.	0.4	2

#	Article	IF	CITATIONS
163	Comparative analysis of the lipid profile of human mesenchymal stem cells induced to pluripotency by different transfection factors. Fertility and Sterility, 2013, 100, S456-S457.	0.5	1
164	Vascularization and VEGF expression in bovine yolk sacs: Impact of reproductive techniques. Placenta, 2016, 45, 92-93.	0.7	1
165	Efficiency of transgene expression in bovine cells varies according to cell type and gene transfer method. Revista Colombiana De Ciencias Pecuarias, 2019, 32, 34-42.	0.4	1
166	Interaction of fibroblasts and induced pluripotent stem cells with poly(vinyl alcohol)â€based hydrogel substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 857-867.	1.6	1
167	Estimation of taurindicine hybridization of American Zebu cattle in Brazil. Genetics and Molecular Research, 2012, 11, 393-403.	0.3	1
168	Tratamento endovascular da disfunção erétil por fÃstula arterioesponjosa traumática: relato de caso. Jornal Vascular Brasileiro, 2012, 11, 317-319.	0.1	1
169	<i>In vitro</i> induced pluripotency from urine-derived cells in porcine. World Journal of Stem Cells, 2022, 14, 231-244.	1.3	1
170	Karyoplast exchange between strontium- and 6-DMAP-parthenogenetically activated zygotes of cattle. Animal Reproduction Science, 2009, 116, 381-385.	0.5	0
171	Implante profilático e temporário de filtro de veia cava inferior no trauma. Jornal Vascular Brasileiro, 2013, 12, 45-48.	0.1	Ο
172	Efficiency of a SCNT bovine cloning program: the importance of the placentation time – preliminary data. Placenta, 2014, 35, A25-A26.	0.7	0
173	Deviations of endometrial immune cells during pregnancy in the cow. Placenta, 2014, 35, A61.	0.7	0
174	In vitro formation of capillary tubules from stem cells of the bovine yolk sac with prospects for therapeutic application. Placenta, 2014, 35, A45.	0.7	0
175	Rreprogramming by gene induction: The factors involved in the establishment of canine stem cells. Placenta, 2014, 35, A92.	0.7	0
176	DNA global epigenetic modifications in bovine cloned placentome. Placenta, 2014, 35, A38.	0.7	0
177	Balance of Lin28a and Lin28b in bovine trophoblast giant cells formation. Placenta, 2016, 45, 95-96.	0.7	0
178	Nuclear and mitochondrial DNA markers in traceability of retail beef samples. Pesquisa Veterinaria Brasileira, 2010, 30, 783-786.	0.5	0
179	Bovine conceptus of Bos indicus produced by somatic cell nuclear transfer and parthenogenesis present morphological variations since the blastocyst stage. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2015, 67, 1483-1491.	0.1	0