
Daniel R Noguera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7358836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Genome Scale Mutant Libraries to Identify Essential Genes. Methods in Molecular Biology, 2022, 2377, 215-236.	0.4	0
2	Integrating lignin depolymerization with microbial funneling processes using agronomically relevant feedstocks. Green Chemistry, 2022, 24, 2795-2811.	4.6	20
3	Metagenome-Assembled Genomes from a Microbiome Converting Xylose to Medium-Chain Carboxylic Acids. Microbiology Resource Announcements, 2022, 11, e0115121.	0.3	2
4	Pilot-scale comparison of biological nutrient removal (BNR) using intermittent and continuous ammonia-based low dissolved oxygen aeration control systems. Water Science and Technology, 2022, 85, 578-590.	1.2	5
5	Correction for Beach et al., "Exploring the Meta-regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome― MSystems, 2022, , e0021322.	1.7	0
6	iNovo479: Metabolic Modeling Provides a Roadmap to Optimize Bioproduct Yield from Deconstructed Lignin Aromatics by Novosphingobium aromaticivorans. Metabolites, 2022, 12, 366.	1.3	3
7	Metagenomes from 25 Low-Abundance Microbes in a Partial Nitritation Anammox Microbiome. Microbiology Resource Announcements, 2022, 11, e0021222.	0.3	2
8	Utilization of lignocellulosic biofuel conversion residue by diverse microorganisms. , 2022, 15, .		2
9	The essential Rhodobacter sphaeroides CenKR two-component system regulates cell division and envelope biosynthesis. PLoS Genetics, 2022, 18, e1010270.	1.5	7
10	Metagenomes and Metagenome-Assembled Genomes from Microbial Communities Fermenting Ultrafiltered Milk Permeate. Microbiology Resource Announcements, 2022, 11, .	0.3	2
11	Environmental impacts of phosphorus recovery through struvite precipitation in wastewater treatment. Journal of Cleaner Production, 2021, 280, 124222.	4.6	70
12	Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME Journal, 2021, 15, 673-687.	4.4	64
13	Kinetic modeling of anaerobic degradation of plant-derived aromatic mixtures by Rhodopseudomonas palustris. Biodegradation, 2021, 32, 179-192.	1.5	4
14	Redundancy in Aromatic <i>O</i> -Demethylation and Ring-Opening Reactions in <i>Novosphingobium aromaticivorans</i> and Their Impact in the Metabolism of Plant-Derived Phenolics. Applied and Environmental Microbiology, 2021, 87, .	1.4	16
15	Simulation-based analysis of full-scale implementation of energy neutral wastewater treatment plants. Journal of Water Process Engineering, 2021, 40, 101875.	2.6	7
16	Delila-PY, a Pipeline for Utilizing the Delila Suite of Software to Identify Potential DNA Binding Motifs. Microbiology Resource Announcements, 2021, 10, .	0.3	1
17	Genome-Resolved Metagenomics of a Photosynthetic Bioreactor Performing Biological Nutrient Removal. Microbiology Resource Announcements, 2021, 10, .	0.3	9
18	Diverse Profile of Fermentation Byproducts From Thin Stillage. Frontiers in Bioengineering and Biotechnology, 2021, 9, 695306.	2.0	16

#	Article	IF	CITATIONS
19	Metabolic Differentiation of Co-occurring Accumulibacter Clades Revealed through Genome-Resolved Metatranscriptomics. MSystems, 2021, 6, e0047421.	1.7	15
20	Promoter Architecture Differences among <i>Alphaproteobacteria</i> and Other Bacterial Taxa. MSystems, 2021, 6, e0052621.	1.7	6
21	Investigating the Chemolithoautotrophic and Formate Metabolism of Nitrospira moscoviensis by Constraint-Based Metabolic Modeling and ¹³ C-Tracer Analysis. MSystems, 2021, 6, e0017321.	1.7	8
22	Mixed Acid Fermentation of Carbohydrate-Rich Dairy Manure Hydrolysate. Frontiers in Bioengineering and Biotechnology, 2021, 9, 724304.	2.0	11
23	Exploring the Meta-regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome. MSystems, 2021, 6, e0090621.	1.7	3
24	Aromatic Dimer Dehydrogenases from <i>Novosphingobium aromaticivorans</i> Reduce Monoaromatic Diketones. Applied and Environmental Microbiology, 2021, 87, e0174221.	1.4	5
25	Genome-Wide Identification of Transcription Start Sites in Two <i>Alphaproteobacteria</i> , Rhodobacter sphaeroides 2.4.1 and Novosphingobium aromaticivorans DSM 12444. Microbiology Resource Announcements, 2020, 9, .	0.3	8
26	Diagnosing and Predicting Mixed-Culture Fermentations with Unicellular and Guild-Based Metabolic Models. MSystems, 2020, 5, .	1.7	20
27	COnTORT: COmprehensive Transcriptomic ORganizational Tool for Simultaneously Retrieving and Organizing Numerous Gene Expression Data Sets from the NCBI Gene Expression Omnibus Database. Microbiology Resource Announcements, 2020, 9, .	0.3	3
28	The NtrYX Two-Component System Regulates the Bacterial Cell Envelope. MBio, 2020, 11, .	1.8	22
29	Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris. Applied and Environmental Microbiology, 2020, 86, .	1.4	9
30	Medium-Chain Fatty Acid Synthesis by " <i>Candidatus</i> Weimeria bifida―gen. nov., sp. nov., and " <i>Candidatus</i> Pseudoramibacter fermentans―sp. nov. Applied and Environmental Microbiology, 2020, 86, .	1.4	42
31	Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 2019, 17, 725-741.	13.6	324
32	Design and Assessment of Species-Level qPCR Primers Targeting Comammox. Frontiers in Microbiology, 2019, 10, 36.	1.5	50
33	Integrated Omic Analyses Provide Evidence that a " <i>Candidatus</i> Accumulibacter phosphatis― Strain Performs Denitrification under Microaerobic Conditions. MSystems, 2019, 4, .	1.7	44
34	Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6-dicarboxylic acid with <i>Novosphingobium aromaticivorans</i> . Green Chemistry, 2019, 21, 1340-1350.	4.6	79
35	A heterodimeric glutathione S-transferase that stereospecifically breaks lignin's β(R)-aryl ether bond reveals the diversity of bacterial β-etherases. Journal of Biological Chemistry, 2019, 294, 1877-1890.	1.6	32
36	A Supply Chain Framework for the Analysis of the Recovery of Biogas and Fatty Acids from Organic Waste. ACS Sustainable Chemistry and Engineering, 2018, 6, 6211-6222.	3.2	23

#	Article	IF	CITATIONS
37	Performance of SiO2, ZrO2, TiO2, Al2O3or Fe2O3Coatings on Ti Electrodes for Arsenic (V) Detection Utilizing Electrochemical Impedance Spectroscopy. Journal of the Electrochemical Society, 2018, 165, B34-B47.	1.3	5
38	<i>In Vitro</i> Enzymatic Depolymerization of Lignin with Release of Syringyl, Guaiacyl, and Tricin Units. Applied and Environmental Microbiology, 2018, 84, .	1.4	41
39	Metatranscriptomic and Thermodynamic Insights into Medium-Chain Fatty Acid Production Using an Anaerobic Microbiome. MSystems, 2018, 3, .	1.7	69
40	Increasing the economic value of lignocellulosic stillage through medium-chain fatty acid production. Biotechnology for Biofuels, 2018, 11, 200.	6.2	99
41	Novosphingobium aromaticivorans uses a Nu-class glutathione S-transferase as a glutathione lyase in breaking the β-aryl ether bond of lignin. Journal of Biological Chemistry, 2018, 293, 4955-4968.	1.6	48
42	Community Assembly and Ecology of Activated Sludge under Photosynthetic Feast–Famine Conditions. Environmental Science & Technology, 2017, 51, 3165-3175.	4.6	28
43	Pilot plant demonstration of stable and efficient high rate biological nutrient removal with low dissolved oxygen conditions. Water Research, 2017, 121, 72-85.	5.3	80
44	Metabolic network analysis reveals microbial community interactions in anammox granules. Nature Communications, 2017, 8, 15416.	5.8	489
45	Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production. MBio, 2017, 8, .	1.8	10
46	Biochemical transformation of lignin for deriving valued commodities from lignocellulose. Current Opinion in Biotechnology, 2017, 45, 120-126.	3.3	95
47	Whole-Community Metagenomics in Two Different Anammox Configurations: Process Performance and Community Structure. Environmental Science & amp; Technology, 2017, 51, 4317-4327.	4.6	98
48	Combining Genome-Scale Experimental and Computational Methods To Identify Essential Genes in Rhodobacter sphaeroides. MSystems, 2017, 2, .	1.7	43
49	Genome-Enabled Insights into the Ecophysiology of the Comammox Bacterium " <i>Candidatus</i> Nitrospira nitrosa― MSystems, 2017, 2, .	1.7	119
50	Transformation of erythromycin during secondary effluent soil aquifer recharging: Removal contribution and degradation path. Journal of Environmental Sciences, 2017, 51, 173-180.	3.2	21
51	Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances (EPS) in different sludges: Effect of EPS fractional polarity on binding mechanism. Journal of Hazardous Materials, 2017, 321, 473-483.	6.5	152
52	Utilization of artificial recharged effluent as makeup water for industrial cooling system: corrosion and scaling. Water Science and Technology, 2016, 73, 2559-2569.	1.2	3
53	Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6. Journal of Biological Chemistry, 2016, 291, 10228-10238.	1.6	44
54	Ancestral genome reconstruction identifies the evolutionary basis for trait acquisition in polyphosphate accumulating bacteria. ISME Journal, 2016, 10, 2931-2945.	4.4	43

#	Article	IF	CITATIONS
55	Transformation and speciation of typical heavy metals in soil aquifer treatment system during long time recharging with secondary effluent: Depth distribution and combination. Chemosphere, 2016, 165, 100-109.	4.2	56
56	Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors. Water Research, 2016, 102, 125-137.	5.3	94
57	Metatranscriptomic insights on gene expression and regulatory controls in <i>Candidatus</i> Accumulibacter phosphatis. ISME Journal, 2016, 10, 810-822.	4.4	98
58	Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin. Journal of Biological Chemistry, 2016, 291, 5234-5246.	1.6	40
59	Electron Partitioning in Anoxic Phototrophic Bacteria. Advances in Photosynthesis and Respiration, 2016, , 679-700.	1.0	0
60	Could in situ <scp>DNAâ€</scp> hybridization chain reaction enable simple and effective detection of identity and function in whole cell hybridizations?. Environmental Microbiology, 2015, 17, 2559-2561.	1.8	2
61	CceR and AkgR Regulate Central Carbon and Energy Metabolism in Alphaproteobacteria. MBio, 2015, 6, .	1.8	12
62	Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by <i>Rhodopseudomonas palustris</i> . Environmental Science & Technology, 2015, 49, 8914-8922.	4.6	51
63	An Integrated Approach to Reconstructing Genome-Scale Transcriptional Regulatory Networks. PLoS Computational Biology, 2015, 11, e1004103.	1.5	23
64	Dissolved organic matter removal during coal slag additive soil aquifer treatment for secondary effluent recharging: Contribution of aerobic biodegradation. Journal of Environmental Management, 2015, 156, 158-166.	3.8	12
65	Oxygen-Dependent Regulation of Bacterial Lipid Production. Journal of Bacteriology, 2015, 197, 1649-1658.	1.0	11
66	Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen. Water Research, 2015, 70, 38-51.	5.3	209
67	Quantifying the effects of light intensity on bioproduction and maintenance energy during photosynthetic growth of Rhodobacter sphaeroides. Photosynthesis Research, 2015, 123, 167-182.	1.6	15
68	Global Analysis of Photosynthesis Transcriptional Regulatory Networks. PLoS Genetics, 2014, 10, e1004837.	1.5	31
69	A Group of Sequence-Related Sphingomonad Enzymes Catalyzes Cleavage of β-Aryl Ether Linkages in Lignin β-Guaiacyl and β-Syringyl Ether Dimers. Environmental Science & Technology, 2014, 48, 12454-12463.	4.6	80
70	Mathematical tools to optimize the design of oligonucleotide probes and primers. Applied Microbiology and Biotechnology, 2014, 98, 9595-9608.	1.7	16
71	Stereochemical Features of Clutathione-dependent Enzymes in the Sphingobium sp. Strain SYK-6 β-Aryl Etherase Pathway. Journal of Biological Chemistry, 2014, 289, 8656-8667.	1.6	58
72	Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical <scp>DNA</scp> templates. Environmental Microbiology, 2014, 16, 1354-1365.	1.8	72

#	Article	IF	CITATIONS
73	<i>Candidatus</i> Accumulibacter phosphatis: Elusive Bacterium Responsible for Enhanced Biological Phosphorus Removal. Journal of Environmental Engineering, ASCE, 2014, 140, 2-10.	0.7	5
74	Automated Design of Probes for rRNA-Targeted Fluorescence <i>In Situ</i> Hybridization Reveals the Advantages of Using Dual Probes for Accurate Identification. Applied and Environmental Microbiology, 2014, 80, 5124-5133.	1.4	39
75	Effect of storage conditions on the stability and fermentability of enzymatic lignocellulosic hydrolysate. Bioresource Technology, 2013, 147, 212-220.	4.8	19
76	Global insights into energetic and metabolic networks in Rhodobacter sphaeroides. BMC Systems Biology, 2013, 7, 89.	3.0	46
77	Benzoyl Coenzyme A Pathway-Mediated Metabolism of <i>meta</i> -Hydroxy-Aromatic Acids in Rhodopseudomonas palustris. Journal of Bacteriology, 2013, 195, 4112-4120.	1.0	9
78	DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences. Applied and Environmental Microbiology, 2012, 78, 717-725.	1.4	589
79	Revised Sequence and Annotation of the Rhodobacter sphaeroides 2.4.1 Genome. Journal of Bacteriology, 2012, 194, 7016-7017.	1.0	36
80	Maximizing reductant flow into microbial H2 production. Current Opinion in Biotechnology, 2012, 23, 382-389.	3.3	20
81	Exploring the in situ accessibility of small subunit ribosomal RNA of members of the domains Bacteria and Eukarya to oligonucleotide probes. Systematic and Applied Microbiology, 2012, 35, 485-495.	1.2	6
82	Modeling Formamide Denaturation of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics. PLoS ONE, 2012, 7, e43862.	1.1	16
83	Development of a Novel Strategy to Cultivate Enhanced Biological Phosphorus Removal (EBPR) Microorganisms. Proceedings of the Water Environment Federation, 2011, 2011, 4833-4851.	0.0	1
84	iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network. BMC Systems Biology, 2011, 5, 116.	3.0	68
85	Pathways Involved in Reductant Distribution during Photobiological H ₂ Production by Rhodobacter sphaeroides. Applied and Environmental Microbiology, 2011, 77, 7425-7429.	1.4	41
86	mathFISH, a Web Tool That Uses Thermodynamics-Based Mathematical Models for <i>In Silico</i> Evaluation of Oligonucleotide Probes for Fluorescence <i>In Situ</i> Hybridization. Applied and Environmental Microbiology, 2011, 77, 1118-1122.	1.4	172
87	Electron Partitioning During Light- and Nutrient-Powered Hydrogen Production by Rhodobacter sphaeroides. Bioenergy Research, 2010, 3, 55-66.	2.2	41
88	Involvement of reactive oxygen species in the electrochemical inhibition of barnacle (<i>Amphibalanus amphitrite</i>) settlement. Biofouling, 2009, 25, 563-571.	0.8	16
89	Denitrification capabilities of two biological phosphorus removal sludges dominated by different â€~ <i>Candidatus</i> Accumulibacter' clades. Environmental Microbiology Reports, 2009, 1, 583-588.	1.0	189
90	Systematic evaluation of single mismatch stability predictors for fluorescence <i>in situ</i> hybridization. Environmental Microbiology, 2008, 10, 2872-2885.	1.8	23

#	Article	IF	CITATIONS
91	Quantification of Target Molecules Needed To Detect Microorganisms by Fluorescence In Situ Hybridization (FISH) and Catalyzed Reporter Deposition-FISH. Applied and Environmental Microbiology, 2008, 74, 5068-5077.	1.4	114
92	Inhibition of barnacle (<i>Amphibalanus amphitrite</i>) cyprid settlement by means of localized, pulsed electric fields. Biofouling, 2008, 24, 177-184.	0.8	33
93	Nitrification Modeling in Pilot-Scale Chloraminated Drinking Water Distribution Systems. Journal of Environmental Engineering, ASCE, 2008, 134, 731-742.	0.7	16
94	Using nitrification potential curves to evaluate fullâ€scale drinking water distribution systems. Journal - American Water Works Association, 2008, 100, 92-103.	0.2	16
95	Nitrospira community composition in nitrifying reactors operated with two different dissolved oxygen levels. Journal of Microbiology and Biotechnology, 2008, 18, 1470-4.	0.9	48
96	Identification of Thermodynamically Inaccessible Target Sites for Fluorescence In Situ Hybridization (FISH). Proceedings of the Water Environment Federation, 2007, 2007, 5010-5019.	0.0	0
97	Pilot-Scale Investigation to Achieve Very Low Nitrogen and Phosphorus Effluents by Retrofitting a University of Cape Town (UCT) Process. Proceedings of the Water Environment Federation, 2007, 2007, 7396-7411.	0.0	1
98	Risk analysis of nitrification occurrence in pilot-scale chloraminated distribution systems. Journal of Water Supply: Research and Technology - AQUA, 2007, 56, 293-311.	0.6	5
99	Modeling Microbial Decay in a Cannibalâ,,¢ Sludge Minimization Process. Proceedings of the Water Environment Federation, 2007, 2007, 1751-1767.	0.0	4
100	Development of thermodynamic models for simulating probe dissociation profiles in fluorescence in situ hybridization. Biotechnology and Bioengineering, 2007, 96, 349-363.	1.7	35
101	Effects of localised, low-voltage pulsed electric fields on the development and inhibition ofPseudomonas aeruginosabiofilms. Biofouling, 2006, 22, 383-390.	0.8	62
102	Recovery of Polyhydroxyalkanoate from Activated Sludge in an Enhanced Biological Phosphorus Removal Bench-Scale Reactor. Water Environment Research, 2006, 78, 770-775.	1.3	9
103	Taking Advantage of Aerated-Anoxic Operation in a Full-Scale University of Cape Town Process. Water Environment Research, 2006, 78, 637-642.	1.3	14
104	Comparison between Direct Microscopy and Flow Cytometry for rRNA-Based Quantification of Candidatus Accumulibacter phosphatis in Activated Sludge. Water Environment Research, 2006, 78, 181-188.	1.3	4
105	Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environmental Microbiology, 2006, 8, 1487-1495.	1.8	209
106	Evaluation of Sludge Yield and Phosphorus Removal in a Cannibal Solids Reduction Process. Journal of Environmental Engineering, ASCE, 2006, 132, 1331-1337.	0.7	62
107	Making All Parts of the 16S rRNA of Escherichia coli Accessible In Situ to Single DNA Oligonucleotides. Applied and Environmental Microbiology, 2006, 72, 733-744.	1.4	90
108	Nitrification potential curves: a new strategy for nitrification prevention. Journal - American Water Works Association, 2005, 97, 90-99.	0.2	40

#	Article	IF	CITATIONS
109	ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL IN A CANNIBALâ,,¢- TYPE ACTIVATED SLUDGE PROCESS. Proceedings of the Water Environment Federation, 2005, 2005, 5933-5940.	0.0	4
110	Bitwise Implementation of a Two-Dimensional Cellular Automata Biofilm Model. Journal of Computing in Civil Engineering, 2005, 19, 258-268.	2.5	16
111	Mechanistic Approach to the Problem of Hybridization Efficiency in Fluorescent In Situ Hybridization. Applied and Environmental Microbiology, 2004, 70, 7126-7139.	1.4	104
112	Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Research, 2004, 38, 3275-3286.	5.3	280
113	Production of Polyhydroxyalkanoate During Treatment of Low-Phosphorus-Content Wastewater. Water Environment Research, 2004, 76, 380-383.	1.3	3
114	Introduction to the IWA task group on biofilm modeling. Water Science and Technology, 2004, 49, 131-6.	1.2	1
115	Results from the multi-species benchmark problem 3 (BM3) using two-dimensional models. Water Science and Technology, 2004, 49, 169-76.	1.2	14
116	Diversity of nitrifying bacteria in full-scale chloraminated distribution systems. Water Research, 2003, 37, 197-205.	5.3	126
117	DEVELOPMENT OF A MECHANISTIC MODEL FOR FLUORESCENT IN SITU HYBRIDIZATION (FISH) BASED ON EQUILIBRIUM THERMODYNAMICS. Proceedings of the Water Environment Federation, 2003, 2003, 610-627.	0.0	0
118	Controlling Biosolids Phosphorus Content in Enhanced Biological Phosphorus Removal Reactors. Water Environment Research, 2003, 75, 254-262.	1.3	6
119	Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System. Applied and Environmental Microbiology, 2002, 68, 73-81.	1.4	218
120	EFFECT OF DISSOLVED OXYGEN ON AMMONIA-OXIDIZING BACTERIAL COMMUNITIES. Proceedings of the Water Environment Federation, 2002, 2002, 130-144.	0.0	1
121	Pilotâ€scale evaluation of nitrification control strategies. Journal - American Water Works Association, 2002, 94, 78-89.	0.2	27
122	REDUCING BIOSOLIDS PHOSPHORUS CONTENT FROM ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL REACTORS. Proceedings of the Water Environment Federation, 2002, 2002, 17-33.	0.0	0
123	Physical Enrichment of Polyphosphate-Accumulating Organisms in Activated Sludge. Water Environment Research, 2002, 74, 354-361.	1.3	17
124	Microbiology of Enhanced Biological Phosphorus Removal in Aerated-Anoxic Orbal Processes. Water Environment Research, 2002, 74, 428-436.	1.3	28
125	Involvement of Rhodocyclus-Related Organisms in Phosphorus Removal in Full-Scale Wastewater Treatment Plants. Applied and Environmental Microbiology, 2002, 68, 2763-2769.	1.4	197
126	Kinetics of <i>Nitrosomonas europaea</i> INACTIVATION by chloramine. Journal - American Water Works Association, 2002, 94, 100-110.	0.2	28

#	Article	IF	CITATIONS
127	Quantitative Cellular Automaton Model for Biofilms. Journal of Environmental Engineering, ASCE, 2001, 127, 782-789.	0.7	91
128	PRODUCTION OF POLYHYDROXYALKANOATE DURING TREATMENT OF LOW-PHOSPHORUS CONTENT WASTEWATER. Proceedings of the Water Environment Federation, 2001, 2001, 66-76.	0.0	3
129	Transformation of 2,4,6-Trinitrotoluene by Purified Xenobiotic Reductase B from Pseudomonas fluorescens I-C. Applied and Environmental Microbiology, 2000, 66, 4742-4750.	1.4	148
130	Simulation of multispecies biofilm development in three dimensions. Water Science and Technology, 1999, 39, 123-130.	1.2	41
131	A unified model describing the role of hydrogen in the growth ofDesulfovibrio vulgaris under different environmental conditions. , 1998, 59, 732-746.		80
132	Combining fluorescent in situ hybridization (fish) with cultivation and mathematical modeling to study population structure and function of ammonia-oxidizing bacteria in activated sludge. Water Science and Technology, 1998, 37, 441-449.	1.2	48
133	A unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions. , 1998, 59, 732.		5
134	Characterization of products from the biotransformation of 2,4-dinitrotoluene by denitrifying enrichment cultures. Water Environment Research, 1997, 69, 260-268.	1.3	7
135	Dichloromethane biodegradation under nitrate-reducing conditions. Water Environment Research, 1997, 69, 115-122.	1.3	25
136	Soluble microbial products (SMP) in anaerobic chemostats. Biotechnology and Bioengineering, 1994, 44, 1040-1047.	1.7	135
137	Explaining widely varying biofilm-process performance with normalized loading curves. Water Environment Research, 1992, 64, 706-711.	1.3	12