Yan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7358687/publications.pdf

Version: 2024-02-01

759233 794594 36 424 12 19 citations h-index g-index papers 37 37 37 160 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tunable slow and fast light in an atom-assisted optomechanical system. Optics Communications, 2015, 338, 569-573.	2.1	49
2	Giant Atoms in a Synthetic Frequency Dimension. Physical Review Letters, 2022, 128, .	7.8	36
3	Perfect transfer of enhanced entanglement and asymmetric steering in a cavity-magnomechanical system. Physical Review A, 2021, 103 , .	2.5	32
4	Giant atoms with time-dependent couplings. Physical Review Research, 2022, 4, .	3 . 6	24
5	Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence. Optics Letters, 2010, 35, 709.	3.3	19
6	Efficient generation and control of robust stationary light signals in a double-î system of cold atoms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 656-661.	2.1	18
7	Comparison of steady and transient optical responses between a four-level Tripod system and a three-level Lambda system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 1088-1092.	2.1	17
8	Controllable unidirectional transport and light trapping using a one-dimensional lattice with non-Hermitian coupling. Scientific Reports, 2020, 10, 1113.	3.3	17
9	Dynamically induced two-color nonreciprocity in a tripod system of a moving atomic lattice. Physical Review A, 2015, 92, .	2.5	16
10	Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms. Physical Review A, 2011, 84, .	2.5	15
11	Dynamically controlled two-color photonic band gaps via balanced four-wave mixing in one-dimensional cold atomic lattices. Physical Review A, 2013, 88, .	2.5	13
12	Tunable high-order photonic band gaps of ultraviolet light in cold atoms. Physical Review A, 2015, 91, .	2.5	13
13	Phase-modulated Autler-Townes splitting in a giant-atom system within waveguide QED. Frontiers of Physics, 2022, 17, 1.	5.0	13
14	Steady optical spectra and light propagation dynamics in cold atomic samples with homogeneous or inhomogeneous densities. Optics Express, 2011, 19, 2111.	3.4	12
15	Light reflector, amplifier, and splitter based on gain-assisted photonic band gaps. Physical Review A, 2016, 94, .	2.5	12
16	Fidelity of the diagonal ensemble signals the many-body localization transition. Physical Review E, 2016, 94, 052119.	2.1	12
17	All-optical photon switching, router and amplifier using a passive-active optomechanical system. Europhysics Letters, 2018, 122, 24001.	2.0	12
18	Controlled unidirectional reflection in cold atoms via the spatial Kramers-Kronig relation. Optics Express, 2021, 29, 5890.	3.4	12

#	Article	IF	CITATIONS
19	Enhanced nonlinear characteristics with the assistance of a \$\$mathscr{PT}\$\$-symmetric trimer system. Scientific Reports, 2018, 8, 2933.	3.3	11
20	Dynamically tunable three-color reflections immune to disorder in optical lattices with trapped cold Rb87 atoms. Physical Review A, 2020, 101, .	2.5	9
21	Excited-state fidelity as a signal for the many-body localization transition in a disordered Ising chain. Scientific Reports, 2017, 7, 577.	3.3	8
22	Dual-gate transistor amplifier in a multimode optomechanical system. Optics Express, 2020, 28, 7095.	3.4	8
23	Electromagnetically induced transparency in a Y system with single Rydberg state. Optics Communications, 2015, 345, 6-12.	2.1	7
24	Polarization phase gate and three-photon GHZ state using coherently enhanced Kerr nonlinearity. Optics Communications, 2010, 283, 1017-1021.	2.1	5
25	Coherent generation and efficient manipulation of dual-channel robust stationary light pulses in ultracold atoms. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2333.	2.1	5
26	Light transfer transitions beyond higher-order exceptional points in parity-time and anti-parity-time symmetric waveguide arrays. Optics Express, 2022, 30, 20088.	3.4	5
27	Phase control of stationary light pulses due to a weak microwave coupling. Optics Communications, 2015, 343, 183-187.	2.1	4
28	Topological edge states controlled by next-nearest-neighbor coupling and Peierls phase in a P T-symmetric trimerized lattice. Optics Express, 2021, 29, 37722.	3.4	4
29	Probe gain via four-wave mixing based on spontaneously generated coherence. Chinese Physics B, 2017, 26, 024204.	1.4	3
30	Multiple PT symmetry and tunable scattering behaviors in a heterojunction cavity. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2075.	2.1	3
31	Light splitting and stopping and their combination via controllable Bloch oscillation in a lattice. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2045.	2.1	3
32	Tunable photonic band gaps and optical nonreciprocity by an RF-driving ladder-type system in moving optical lattice. Optics Communications, 2018, 410, 916-922.	2.1	2
33	Controllable enhanced linear and nonlinear optical characteristics induced by PT-like phase transition. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126836.	2.1	2
34	Nonreciprocal transmission and asymmetric fast–slow light effect in an optomechanical system with two \$mathcal{PT}\$-symmetric mechanical resonators. Laser Physics, 2020, 30, 105205.	1,2	2
35	Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms. Optics Communications, 2018, 412, 49-54.	2.1	1
36	Inversionless gain via six-wave mixing and the investigation of distributed feedback. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1620-1623.	2.1	0

3