Jose Luis Campana Camargo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7358191/publications.pdf

Version: 2024-02-01

49 papers

4,656 citations

186265 28 h-index 214800 47 g-index

50 all docs 50 docs citations

50 times ranked

7208 citing authors

#	Article	IF	CITATIONS
1	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	27.8	796
2	The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation, 2011, 144, 56-67.	4.1	713
3	Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 2017, 355, 925-931.	12.6	443
4	Complex edge effects on soil moisture and microclimate in central Amazonian forest. Journal of Tropical Ecology, 1995, 11, 205-221.	1.1	325
5	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
6	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
7	An <scp>A</scp> mazonian rainforest and its fragments as a laboratory of global change. Biological Reviews, 2018, 93, 223-247.	10.4	194
8	Estimating the global conservation status of more than 15,000 Amazonian tree species. Science Advances, 2015, 1, e1500936.	10.3	122
9	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	9.5	116
10	Rehabilitation of Degraded Areas of Central Amazonia Using Direct Sowing of Forest Tree Seeds. Restoration Ecology, 2002, 10, 636-644.	2.9	113
11	Species Distribution Modelling: Contrasting presence-only models with plot abundance data. Scientific Reports, 2018, 8, 1003.	3.3	113
12	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
13	Longâ€term changes in liana abundance and forest dynamics in undisturbed Amazonian forests. Ecology, 2014, 95, 1604-1611.	3.2	96
14	Innovative approaches to the preservation of forest trees. Forest Ecology and Management, 2014, 333, 88-98.	3.2	80
15	Panâ€tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78
16	Effects of the Surrounding Matrix on Tree Recruitment in Amazonian Forest Fragments. Conservation Biology, 2006, 20, 853-860.	4.7	73
17	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	4.1	71
18	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62

#	Article	IF	CITATIONS
19	Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology, 2020, 101, e03052.	3.2	57
20	Fragmentation affects plant community composition over time. Ecography, 2017, 40, 119-130.	4.5	56
21	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
22	Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytologist, 2021, 230, 116-128.	7.3	50
23	Near Infrared Spectroscopy Facilitates Rapid Identification of Both Young and Mature Amazonian Tree Species. PLoS ONE, 2015, 10, e0134521.	2.5	46
24	Persistent effects of fragmentation on tropical rainforest canopy structure after 20Âyr of isolation. Ecological Applications, 2019, 29, e01952.	3.8	45
25	Apparent environmental synergism drives the dynamics of Amazonian forest fragments. Ecology, 2014, 95, 3018-3026.	3.2	41
26	Responses of seedling transplants to environmental variations in contrasting habitats of Central Amazonia. Journal of Tropical Ecology, 2005, 21, 397-406.	1.1	34
27	Phylogenetic Impoverishment of Amazonian Tree Communities in an Experimentally Fragmented Forest Landscape. PLoS ONE, 2014, 9, e113109.	2.5	34
28	Predicted trajectories of tree community change in Amazonian rainforest fragments. Ecography, 2017, 40, 26-35.	4.5	33
29	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32
30	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	3.3	28
31	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	7.8	27
32	Reframing tropical savannization: linking changes in canopy structure to energy balance alterations that impact climate. Ecosphere, 2020, 11, e03231.	2.2	24
33	Forest fragmentation impacts the seasonality of Amazonian evergreen canopies. Nature Communications, 2022, 13, 917.	12.8	20
34	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	5.8	17
35	Seed and fruit tradeoffs – the economics of seed packaging in Amazon pioneers. Plant Ecology and Diversity, 2014, 7, 371-382.	2.4	16
36	What is the temporal extension of edge effects on tree growth dynamics? A dendrochronological approach model using Scleronema micranthum (Ducke) Ducke trees of a fragmented forest in the Central Amazon. Ecological Indicators, 2019, 101, 133-142.	6.3	14

#	Article	lF	CITATIONS
37	Shifts in structural diversity of Amazonian forest edges detected using terrestrial laser scanning. Remote Sensing of Environment, 2022, 271, 112895.	11.0	12
38	Changes in seed rain across Atlantic Forest fragments in Northeast Brazil. Acta Oecologica, 2013, 53, 49-55.	1.1	8
39	Do polyembryonic seeds of Carapa surinamensis (Meliaceae) have advantages for seedling development?. Acta Amazonica, 2019, 49, 97-104.	0.7	6
40	Germinative behaviour of ten tree species in white-water floodplain forests in central Amazonia. Folia Geobotanica, 2018, 53, 89-101.	0.9	5
41	Abundance of liana species in an Amazonian forest of Brazil reflects neither adventitious root nor foliar sprout production. Journal of Tropical Ecology, 2018, 34, 257-267.	1.1	5
42	<p>Pouteria kossmanniae (Sapotaceae): a new species from Central Amazonia, Brazil</p> . Phytotaxa, 2020, 447, 265-275.	0.3	5
43	Physical Damage in Relation to Carbon Allocation Strategies of Tropical Forest Tree Saplings. Biotropica, 2004, 36, 410-413.	1.6	4
44	Understory plant interactions along a successional gradient in Central Amazon. Plant and Soil, 2020, 450, 81-92.	3.7	4
45	Amazonian trees show increased edge effects due to Atlantic Ocean warming and northward displacement of the Intertropical Convergence Zone since 1980. Science of the Total Environment, 2019, 693, 133515.	8.0	3
46	Amazon forest fragmentation and edge effects temporarily favored understory and midstory tree growth. Trees - Structure and Function, 2021, 35, 2059-2068.	1.9	3
47	Multiple shoots of Carapa surinamensis seeds: Characterization and consequences in light of post-germination manipulation by rodents. South African Journal of Botany, 2017, 108, 346-351.	2.5	2
48	Species density diverges after forest fragmentation in lianescent Machaerium Pers. (Fabaceae) in Central Amazonia. Forest Ecology and Management, 2022, 519, 120335.	3.2	1
49	Chromolucuma brevipedicellata (Sapotaceae, Chrysophylloideae), a new tree species from central Amazonia, Brazil. Brittonia, 2021, 73, 211.	0.2	O